On the stability of higher ring left derivations

被引:0
作者
Yong-Soo Jung
机构
[1] Sun Moon University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2016年 / 47卷
关键词
Higher left ring derivation; approximately higher left ring derivation; stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we investigate the Hyers-Ulam, the Isac and Rassias-type stability and the Bourgin-type superstability of a functional inequality corresponding to the following functional equation: hn(xy)=∑i+j=ni≤j[hi(x)hj(y)+cijhi(y)hj(x)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h_n}\left( {xy} \right) = \sum\limits_{\begin{array}{*{20}{c}} {i + j = n} \\ {i \leqslant j} \end{array}} {\left[ {{h_i}\left( x \right){h_j}\left( y \right) + {c_{ij}}{h_i}\left( y \right){h_j}\left( x \right)} \right]} $$\end{document}, where cij={1ifi≠j,0ifi=j.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{ij}} = \left\{ {\begin{array}{*{20}{c}} 1&{if\;i \ne j,} \\ 0&{if\;i = j.} \end{array}} \right.$$\end{document}
引用
收藏
页码:523 / 533
页数:10
相关论文
共 23 条
[1]  
Aoki T.(1950)On the stability of the linear transformation in Banach spaces J. Math. Soc. Japan 2 64-66
[2]  
Badora R.(2002)On approximate ring homomorphisms J. Math. Anal. Appl. 276 589-597
[3]  
Badora R.(2006)On approximate derivations Math. Inequal. Appl. 9 167-173
[4]  
Bourgin D. G.(1949)Approximately isometric and multiplicative transformations on continuous function rings Duke Math. J. 16 385-397
[5]  
Brešar M.(1990)On left derivations and related mappings Proc. Amer. Math. Soc. 10 7-16
[6]  
Vukman J.(1991)On stability of additive mappings Internat. J. Math. Math. Sci. 14 431-434
[7]  
Gajda Z.(1994)A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings J. Math. Anal. Appl. 184 431-436
[8]  
Găvruţă P.(1941)On the stability of the linear functional equation Proc. Natl. Acad. Sci. U.S.A. 27 222-224
[9]  
Hyers D. H.(1993)On the Hyers-Ulam stability of J. Approx. Theory 72 131-137
[10]  
Isac G.(1977)-additive mappings Pacific J. Math. 68 91-98