Semi-Heavy Tails

被引:0
作者
Edward Omey
Stefan Van Gulck
Rein Vesilo
机构
[1] Faculty of Economics and Business,Department of Engineering
[2] KU Leuven,undefined
[3] Macquarie University,undefined
来源
Lithuanian Mathematical Journal | 2018年 / 58卷
关键词
semi-heavy tail; regular variation; convolutions; asymptotic behaviour; subordination; 26A12; 33B99; 60K05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study properties of functions and sequences with a semi-heavy tail, that is, functions and sequences of the form w(x) = e−βxf(x), β > 0, resp., wn = cnfn, 0 < c < 1, where the function f(x), resp., the sequence (fn), is regularly varying. Among others, we give a representation theorem and study convolution properties. The paper includes several examples and applications in probability theory.
引用
收藏
页码:480 / 499
页数:19
相关论文
共 22 条
  • [1] Albin JMP(2009)On the asymptotic behaviour of Lévy processes. Part 1: Subexponential and exponential processes Stochastic Processes Appl. 119 281-304
  • [2] Sunden M(1998)Processes of normal inverse Gaussian type Finance Stoch. 2 41-68
  • [3] Barndorff-Nielsen OE(1973)Functions of probability measures J. Anal. Math. XXVI 255-302
  • [4] Chover J(1995)Hyperbolic distributions in finance Bernoulli 1 281-299
  • [5] Ney P(1984)Functions of power series Yokohama Math. J. 32 77-88
  • [6] Wainger S(1990)The generalized logarithmic series distribution Stat. Probab. Lett. 9 311-316
  • [7] Eberlein E(1989)Subexponential distributions and characterizations of related classes Probab. Theory Relat. Fields 82 259-269
  • [8] Keller U(2011)A generalized Lindley distribution Sankhyā, Ser. B 73 331-359
  • [9] Embrechts P(1999)Compound sums and subexponentiality Bernoulli 5 999-1012
  • [10] Omey E(2015)On a transformation between distributions obeying the principle of a single big jump J. Math. Anal. Appl. 430 672-684