Optimization of shadow evaporation and oxidation for reproducible quantum Josephson junction circuits

被引:0
作者
Dmitry O. Moskalev
Evgeniy V. Zikiy
Anastasiya A. Pishchimova
Daria A. Ezenkova
Nikita S. Smirnov
Anton I. Ivanov
Nikita D. Korshakov
Ilya A. Rodionov
机构
[1] Bauman Moscow State Technical University,FMN Laboratory
[2] Dukhov Automatics Research Institute (VNIIA),undefined
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlOx/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps. We experimentally demonstrate the evidence of optimal Josephson junction electrodes thickness, deposition rate and deposition angle, which ensure minimal electrode surface and line edge roughness. The influence of oxidation method, pressure and time on critical current reproducibility is determined. With the proposed method we demonstrate Al/AlOx/Al junction fabrication with the critical current variation (σ/⟨Ic⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma /\langle {I_{c} } \rangle )$$\end{document} less than 3.9% (from 150 × 200 to 150 × 600 nm2 area) and 7.7% (for 100 × 100 nm2 area) over 20 × 20 mm2 chip. Finally, we fabricate separately three 5 × 10 mm2 chips with 18 transmon qubits (near 4.3 GHz frequency) showing less than 1.9% frequency variation between qubits on different chips. The proposed approach and optimization criteria can be utilized for a robust wafer-scale superconducting qubit circuits fabrication.
引用
收藏
相关论文
共 46 条
[1]  
Clarke J(2008)Superconducting quantum bits Nature 453 1031-1042
[2]  
Wilhelm FK(2016)Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions Sci. Rep. 6 130-310
[3]  
Zeng L(2019)A quantum engineer's guide to superconducting qubits Appl. Phys. Rev. 6 93-153
[4]  
Tran DT(2021)Topological excitations and bound photon pairs in a superconducting quantum metamaterial Phys. Rev. B 103 307-153
[5]  
Tai CW(2021)Photon transport in a Bose–Hubbard chain of superconducting artificial atoms Phys. Rev. Lett. 126 337-435
[6]  
Svensson G(2022)High fidelity two-qubit gates on fluxoniums using a tunable coupler npj Quantum Inf. 8 A19-412
[7]  
Olsson E(2020)Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits Supercond. Sci. Technol. 33 1067-233
[8]  
Krantz P(2021)Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits Appl. Phys. Lett. 118 59-5
[9]  
Besedin IS(2022)Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms npj Quantum Inf. 8 150-undefined
[10]  
Fedorov GP(2012)Fabrication of stable and reproducible submicron tunnel junctions J. Vac. Sci. Technol. B 30 427-undefined