Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov–Sachs interface

被引:0
|
作者
D. Choudhuri
R. Banerjee
S. G. Srinivasan
机构
[1] University of North Texas,Department of Materials Science and Engineering, Advanced Materials and Manufacturing Processes Institute
[2] University of North Texas,Department of Materials Science and Engineering
来源
关键词
Bicrystals; Glissile Dislocations; Dislocation Processes; Temperature High Strain Rate; Study Deformation Mechanisms;
D O I
暂无
中图分类号
学科分类号
摘要
Creating tailored interfaces between soft and hard materials is a promising route to simultaneously enhance ductility and strength of multicomponent materials. Here, we study deformation mechanisms in a model bicrystal, with a Kurdjumov–Sachs (KS) interface, between face-centered-cubic Ni and ordered-B2 NiAl slabs using molecular dynamics simulations. The bicrystals were uniaxially deformed by strain rates of 107\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^7$$\end{document} and 109s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^9\,\hbox {s}^{-1}$$\end{document} by holding temperatures constant at 300, 500, 700, and 900 K for each strain rate. Our simulations reveal atomistic processes that create sessile and glissile dislocations, and their reactions during high-strain rate deformation. At 109s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^9\,\hbox {s}^{-1}$$\end{document} strain rates, dislocation processes enhance ductility and cause large-scale atomic rearrangements in the KS interfacial region. This subsequently causes nucleation, growth, and coalescence of nano-voids into cracks inside the harder B2-ordered phase bordering the interface. Our results suggest that interfaces between “soft”–“hard” materials likely withstand high-strain rates better.
引用
收藏
页码:5684 / 5695
页数:11
相关论文
共 5 条
  • [1] Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov-Sachs interface
    Choudhuri, D.
    Banerjee, R.
    Srinivasan, S. G.
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 5684 - 5695
  • [2] Interface dominated deformation mechanisms in two-phase fcc/B2 nanostructures: Nishiyama-Wasserman vs. Kurdjumov-Sachs interfaces
    Choudhuri, Deep
    CampBell, Audrey
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 177 (177)
  • [3] In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg
    Wollmershauser, J. A.
    Kabra, S.
    Agnew, S. R.
    ACTA MATERIALIA, 2009, 57 (01) : 213 - 223
  • [4] Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2
    Gwalani, B.
    Soni, V.
    Choudhuri, D.
    Lee, M.
    Hwang, J. Y.
    Nam, S. J.
    Ryu, H.
    Hong, S. H.
    Banerjee, R.
    SCRIPTA MATERIALIA, 2016, 123 : 130 - 134
  • [5] Strain hardening of novel high Al low-density steel consisting of austenite matrix and B2-ordered intermetallic second phase in the perspective of non-cell forming face-centered-cubic alloy with high stacking fault energy
    Kim, Hansoo
    SCRIPTA MATERIALIA, 2019, 160 : 29 - 32