共 5 条
Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov–Sachs interface
被引:0
|作者:
D. Choudhuri
R. Banerjee
S. G. Srinivasan
机构:
[1] University of North Texas,Department of Materials Science and Engineering, Advanced Materials and Manufacturing Processes Institute
[2] University of North Texas,Department of Materials Science and Engineering
来源:
关键词:
Bicrystals;
Glissile Dislocations;
Dislocation Processes;
Temperature High Strain Rate;
Study Deformation Mechanisms;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Creating tailored interfaces between soft and hard materials is a promising route to simultaneously enhance ductility and strength of multicomponent materials. Here, we study deformation mechanisms in a model bicrystal, with a Kurdjumov–Sachs (KS) interface, between face-centered-cubic Ni and ordered-B2 NiAl slabs using molecular dynamics simulations.
The bicrystals were uniaxially deformed by strain rates of 107\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^7$$\end{document} and 109s-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^9\,\hbox {s}^{-1}$$\end{document} by holding temperatures constant at 300, 500, 700, and 900 K for each strain rate.
Our simulations reveal atomistic processes that create sessile and glissile dislocations, and their reactions during high-strain rate deformation. At 109s-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^9\,\hbox {s}^{-1}$$\end{document} strain rates, dislocation processes enhance ductility and cause large-scale atomic rearrangements in the KS interfacial region. This subsequently causes nucleation, growth, and coalescence of nano-voids into cracks inside the harder B2-ordered phase bordering the interface. Our results suggest that interfaces between “soft”–“hard” materials likely withstand high-strain rates better.
引用
收藏
页码:5684 / 5695
页数:11
相关论文