Numerical Simulation of Gas/Solid Heat Transfer in Metallic Foams: A General Correlation for Different Porosities and Pore Sizes

被引:0
|
作者
Azade Jafarizade
Masoud Panjepour
Mahmood Meratian
Mohsen Davazdah Emami
机构
[1] Isfahan University of Technology,Department of Materials Engineering
[2] Isfahan University of Technology,Department of Mechanical Engineering
来源
Transport in Porous Media | 2019年 / 127卷
关键词
Fluid flow; Convection heat transfer; Foam structural factor; Micro-tomography; Nusselt number;
D O I
暂无
中图分类号
学科分类号
摘要
In the present research work, numerical simulations were performed to investigate the effects of structural parameters on fluid flow and heat transfer under unsteady state conditions in aluminium foams, with various physical specifications such as different porosities (76–96%), pores diameter (100–500 μm) and tortuosity (1.024–1.14), by meshing computed micro-tomography images. In all the simulated cases, the fluid was considered as air with a temperature of 500 K and different superficial velocities (1–6 m/s) entered the foam with a temperature of 300 K. Calculation of the pressure gradient based on a generic formula ΔP/L = αv + βv2 shows that by increasing porosity and pore diameter, coefficients α and β decrease. Moreover, heat transfer analysis shows that the average convection heat transfer coefficient (have) depends on the geometrical parameters of the foam and also on the superficial velocity of the fluid. In fact, the minor changes in the pore diameter can greatly affect have (e.g. the variation of have for samples with 86% porosity at inlet velocity of 5 m/s and different pore diameters from 500 to 100 μm: 250 to 600 J/m2 s K). However, the porosity variations do not have significant effects on have. On the other hand, by using the nonlinear least square fitting technique and also including the structural factor (Fs, function of the foam geometrical parameters) to the Nu correlation, the equation Nu = 0.0305 Re0.77 Fs [where Fs = ((1 − ε)/τ)−0.27 (dp/dt)−5.108] for determining the Nu in the different foams has been proposed. The equation and simulated results are agreed with each other very well and additionally are similar to the previous studies. Therefore, it’s expected that this equation can be used in design and performance evaluation of porous heat exchangers and porous catalysts.
引用
收藏
页码:481 / 506
页数:25
相关论文
共 21 条