Homomorphisms in quasi-Banach algebras associated with a Pexiderized Cauchy-Jensen functional equation

被引:0
作者
Abbas Najati
机构
[1] University of Mohaghegh Ardabili,Department of Mathematics, Faculty of Sciences
来源
Acta Mathematica Sinica, English Series | 2009年 / 25卷
关键词
Cauchy additive mapping; Jensen additive mapping; homomorphisms in quasi-Banach algebras; generalized Hyers-Ulam stability; -Banach algebra; Primary 39B72; 46B03; 47J99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the generalized Hyers-Ulam stability of homomorphisms in quasi-Banach algebras associated with the following Pexiderized Jensen functional equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f\left( {\frac{{x + y}} {2} + z} \right) - g\left( {\frac{{x - y}} {2} + z} \right) = h(y). $$\end{document} This is applied to investigating homomorphisms between quasi-Banach algebras. The concept of the generalized Hyers-Ulam stability originated from Rassias’ stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297–300 (1978).
引用
收藏
页码:1529 / 1542
页数:13
相关论文
共 55 条
  • [1] Hyers D. H.(1941)On the stability of the linear functional equation Proc. Nat. Acad. Sci. 27 222-224
  • [2] Rassias Th. M.(1978)On the stability of the linear mapping in Banach spaces Proc. Amer. Math. Soc. 72 297-300
  • [3] Rassias Th. M.(1990)Problem 16; 2, Report of the 27th International Symp. on Functional Equations Aequationes Math. 39 292-293
  • [4] Gajda Z.(1991)On stability of additive mappings Internat. J. Math. Math. Sci. 14 431-434
  • [5] Rassias Th. M.(1992)On the behaviour of mappings which do not satisfy Hyers-Ulam stability Proc. Amer. Math. Soc. 114 989-993
  • [6] Šemrl P.(1994)A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings J. Math. Anal. Appl. 184 431-436
  • [7] Găvruta P.(1996)On the Hyers-Ulam-Rassias stability of approximately additive mappings J. Math. Anal. Appl. 204 221-226
  • [8] Jung S.-M.(1982)On approximation of approximately linear mappings by linear mappings J. Funct. Anal. 46 126-130
  • [9] Rassias J. M.(1996)Stability of Internat. J. Math. Math. Sci. 19 219-228
  • [10] Isac G.(1998)-additive mappings: Applications to nonlinear analysis Proc. Amer. Math. Soc. 126 425-430