Asynchronous channel hopping systems from difference sets

被引:0
|
作者
Xiaotian Chen
Yue Zhou
机构
[1] National University of Defense Technology,College of Electronic Science and Engineering
[2] National University of Defense Technology,College of Science
[3] Università degli Studi di Napoli “Federico II”,Dipartimento di Mathematica e Applicazioni “R. Caccioppoli”
来源
Designs, Codes and Cryptography | 2017年 / 83卷
关键词
Difference set; Hopping sequence; Projective plane; Blind rendezvous; Cognitive radio network; 05B10; 94A55; 94C30;
D O I
暂无
中图分类号
学科分类号
摘要
In cognitive radio networks, the process for any two unlicensed (secondary) users (SU) to establish links through a common channel is called a rendezvous. It is hard to employ a common control channel to solve the rendezvous problem, because of the bottleneck of the single control channel. Asynchronous channels hopping (ACH) systems have been proposed and investigated to guarantee rendezvous without requirement of global synchronization and common control channels. An ACH system with N channels can be mathematically interpreted as a set of sequences of the same period T on the alphabet {0,1,…,N-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1,\ldots , N-1\}$$\end{document} satisfying certain rotation closure properties. For each l∈{0,1,…,T-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \{0,1,\ldots , T-1 \}$$\end{document}, each j∈{0,1,…,N-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{0,1,\ldots , N-1 \}$$\end{document} and any two distinct sequences u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf u$$\end{document}, v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf v$$\end{document} in an ACH system H, if there always exists i such that the i-th entries of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf u$$\end{document} and Ll(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{l}(\mathbf v)$$\end{document} are both identical to j where Ll(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{l}(\mathbf v)$$\end{document} denotes the cyclic shift of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf v$$\end{document} by l, then H is called a complete ACH system, which guarantees rendezvous between any two SUs who share at least one common channel. In this paper, we prove some properties of such systems. Moreover, we investigate the complete ACH systems, in each of which all SUs repeat the same (global) sequence associated with the system. One challenging research problem is to construct such ACH systems of period T=βN2+o(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=\beta N^2 + o(N^2)$$\end{document} such that β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is as small as possible. By applying mathematical tools such as group rings and (relative, relaxed) difference sets from combinatorial design theory, we obtain two constructions of them in which β=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =1,2$$\end{document} respectively. Finally, we also present a simple and powerful approach to combining known ACH systems to produce new ones.
引用
收藏
页码:179 / 196
页数:17
相关论文
共 50 条
  • [31] Two-Hop Transmissions in Asynchronous Channel-Hopping Cognitive Radio Wireless Networks With Buffer-Aided Relays
    Shiau, Bo-Yan
    Yang, Guu-Chang
    Chang, Min-Kuan
    Lo, Feng-Wen
    Kwong, Wing C.
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (05) : 1729 - 1733
  • [32] Abelian difference sets with the symmetric difference property
    James A. Davis
    J. J. Hoo
    Connor Kissane
    Ziming Liu
    Calvin Reedy
    Kartikey Sharma
    Ken Smith
    Yiwei Sun
    Designs, Codes and Cryptography, 2021, 89 : 517 - 523
  • [33] Abelian difference sets with the symmetric difference property
    Davis, James A.
    Hoo, J. J.
    Kissane, Connor
    Liu, Ziming
    Reedy, Calvin
    Sharma, Kartikey
    Smith, Ken
    Sun, Yiwei
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 517 - 523
  • [34] Difference balanced functions and their generalized difference sets
    Pott, Alexander
    Wang, Qi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 131 : 61 - 70
  • [35] Almost Difference Sets From Singer Type Golomb Rulers
    Daza Urbano, David Fernando
    Martos Ojeda, Carlos Andres
    Trujillo Solarte, Carlos Alberto
    IEEE ACCESS, 2022, 10 : 1132 - 1137
  • [36] Paley type sets from cyclotomic classes and Arasu-Dillon-Player difference sets
    Chen, Yu Qing
    Feng, Tao
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (03) : 581 - 600
  • [37] CH-CSMA/CA: A MAC protocol for asynchronous channel hopping rendezvous in 802.11 DCF-based cognitive radio networks
    Liu Q.
    Wang X.
    Zhou X.
    International Journal of Autonomous and Adaptive Communications Systems, 2016, 9 (1-2) : 71 - 84
  • [38] Tiling groups with difference sets
    Custic, Ante
    Krcadinac, Vedran
    Zhou, Yue
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02)
  • [39] More DD difference sets
    J. F. Dillon
    Designs, Codes and Cryptography, 2008, 49 : 23 - 32
  • [40] Difference sets and recursion theory
    Schmerl, JH
    MATHEMATICAL LOGIC QUARTERLY, 1998, 44 (04) : 515 - 521