Asynchronous channel hopping systems from difference sets

被引:0
|
作者
Xiaotian Chen
Yue Zhou
机构
[1] National University of Defense Technology,College of Electronic Science and Engineering
[2] National University of Defense Technology,College of Science
[3] Università degli Studi di Napoli “Federico II”,Dipartimento di Mathematica e Applicazioni “R. Caccioppoli”
来源
Designs, Codes and Cryptography | 2017年 / 83卷
关键词
Difference set; Hopping sequence; Projective plane; Blind rendezvous; Cognitive radio network; 05B10; 94A55; 94C30;
D O I
暂无
中图分类号
学科分类号
摘要
In cognitive radio networks, the process for any two unlicensed (secondary) users (SU) to establish links through a common channel is called a rendezvous. It is hard to employ a common control channel to solve the rendezvous problem, because of the bottleneck of the single control channel. Asynchronous channels hopping (ACH) systems have been proposed and investigated to guarantee rendezvous without requirement of global synchronization and common control channels. An ACH system with N channels can be mathematically interpreted as a set of sequences of the same period T on the alphabet {0,1,…,N-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1,\ldots , N-1\}$$\end{document} satisfying certain rotation closure properties. For each l∈{0,1,…,T-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \{0,1,\ldots , T-1 \}$$\end{document}, each j∈{0,1,…,N-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{0,1,\ldots , N-1 \}$$\end{document} and any two distinct sequences u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf u$$\end{document}, v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf v$$\end{document} in an ACH system H, if there always exists i such that the i-th entries of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf u$$\end{document} and Ll(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{l}(\mathbf v)$$\end{document} are both identical to j where Ll(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{l}(\mathbf v)$$\end{document} denotes the cyclic shift of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf v$$\end{document} by l, then H is called a complete ACH system, which guarantees rendezvous between any two SUs who share at least one common channel. In this paper, we prove some properties of such systems. Moreover, we investigate the complete ACH systems, in each of which all SUs repeat the same (global) sequence associated with the system. One challenging research problem is to construct such ACH systems of period T=βN2+o(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=\beta N^2 + o(N^2)$$\end{document} such that β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is as small as possible. By applying mathematical tools such as group rings and (relative, relaxed) difference sets from combinatorial design theory, we obtain two constructions of them in which β=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =1,2$$\end{document} respectively. Finally, we also present a simple and powerful approach to combining known ACH systems to produce new ones.
引用
收藏
页码:179 / 196
页数:17
相关论文
共 50 条
  • [21] Grassmannian codes from paired difference sets
    Matthew Fickus
    Joseph W. Iverson
    John Jasper
    Emily J. King
    Designs, Codes and Cryptography, 2021, 89 : 2553 - 2576
  • [22] Grassmannian codes from paired difference sets
    Fickus, Matthew
    Iverson, Joseph W.
    Jasper, John
    King, Emily J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2553 - 2576
  • [23] Difference-Set-Based Channel Hopping for Minimum-Delay Blind Rendezvous in Multi-Radio Cognitive Radio Networks
    Tan, Xuesong Jonathan
    Wang, Jieran
    Yuan, Yongjun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (05) : 4918 - 4932
  • [24] Constructions of almost difference sets from finite fields
    Ding, Cunsheng
    Pott, Alexander
    Wang, Qi
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) : 581 - 592
  • [25] Merit factors of polynomials derived from difference sets
    Guenther, Christian
    Schmidt, Kai-Uwe
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 145 : 340 - 363
  • [26] Constructions of almost difference sets from finite fields
    Cunsheng Ding
    Alexander Pott
    Qi Wang
    Designs, Codes and Cryptography, 2014, 72 : 581 - 592
  • [27] A Construction of Difference Sets
    Chen Y.Q.
    Designs, Codes and Cryptography, 1998, 13 (3) : 247 - 250
  • [28] Difference Sets and Hyperovals
    Maschietti A.
    Designs, Codes and Cryptography, 1998, 14 (1) : 89 - 98
  • [29] Paley type sets from cyclotomic classes and Arasu–Dillon–Player difference sets
    Yu Qing Chen
    Tao Feng
    Designs, Codes and Cryptography, 2015, 74 : 581 - 600
  • [30] An extension of building sets and relative difference sets
    Hou, XD
    Sehgal, SK
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (01) : 50 - 57