Asynchronous channel hopping systems from difference sets

被引:0
|
作者
Xiaotian Chen
Yue Zhou
机构
[1] National University of Defense Technology,College of Electronic Science and Engineering
[2] National University of Defense Technology,College of Science
[3] Università degli Studi di Napoli “Federico II”,Dipartimento di Mathematica e Applicazioni “R. Caccioppoli”
来源
Designs, Codes and Cryptography | 2017年 / 83卷
关键词
Difference set; Hopping sequence; Projective plane; Blind rendezvous; Cognitive radio network; 05B10; 94A55; 94C30;
D O I
暂无
中图分类号
学科分类号
摘要
In cognitive radio networks, the process for any two unlicensed (secondary) users (SU) to establish links through a common channel is called a rendezvous. It is hard to employ a common control channel to solve the rendezvous problem, because of the bottleneck of the single control channel. Asynchronous channels hopping (ACH) systems have been proposed and investigated to guarantee rendezvous without requirement of global synchronization and common control channels. An ACH system with N channels can be mathematically interpreted as a set of sequences of the same period T on the alphabet {0,1,…,N-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1,\ldots , N-1\}$$\end{document} satisfying certain rotation closure properties. For each l∈{0,1,…,T-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l\in \{0,1,\ldots , T-1 \}$$\end{document}, each j∈{0,1,…,N-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{0,1,\ldots , N-1 \}$$\end{document} and any two distinct sequences u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf u$$\end{document}, v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf v$$\end{document} in an ACH system H, if there always exists i such that the i-th entries of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf u$$\end{document} and Ll(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{l}(\mathbf v)$$\end{document} are both identical to j where Ll(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{l}(\mathbf v)$$\end{document} denotes the cyclic shift of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf v$$\end{document} by l, then H is called a complete ACH system, which guarantees rendezvous between any two SUs who share at least one common channel. In this paper, we prove some properties of such systems. Moreover, we investigate the complete ACH systems, in each of which all SUs repeat the same (global) sequence associated with the system. One challenging research problem is to construct such ACH systems of period T=βN2+o(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=\beta N^2 + o(N^2)$$\end{document} such that β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is as small as possible. By applying mathematical tools such as group rings and (relative, relaxed) difference sets from combinatorial design theory, we obtain two constructions of them in which β=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =1,2$$\end{document} respectively. Finally, we also present a simple and powerful approach to combining known ACH systems to produce new ones.
引用
收藏
页码:179 / 196
页数:17
相关论文
共 50 条
  • [1] Asynchronous channel hopping systems from difference sets
    Chen, Xiaotian
    Zhou, Yue
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (01) : 179 - 196
  • [2] Upper bounds and constructions of complete Asynchronous channel hopping systems
    Gao, Zhe
    Li, Chao
    Zhou, Yue
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02): : 299 - 312
  • [3] Upper bounds and constructions of complete Asynchronous channel hopping systems
    Zhe Gao
    Chao Li
    Yue Zhou
    Cryptography and Communications, 2019, 11 : 299 - 312
  • [4] Symmetric Channel Hopping for Blind Rendezvous in Cognitive Radio Networks Based on Union of Disjoint Difference Sets
    Tan, Xuesong Jonathan
    Zhou, Chao
    Chen, Jie
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (11) : 10233 - 10248
  • [5] Role-Based Channel Hopping Algorithm for a Cognitive Radio Network in Asynchronous Environment
    Sa, Sangeeta
    Mahapatro, Arunanshu
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (03) : 2083 - 2102
  • [6] Role-Based Channel Hopping Algorithm for a Cognitive Radio Network in Asynchronous Environment
    Sangeeta Sa
    Arunanshu Mahapatro
    Wireless Personal Communications, 2022, 127 (3) : 2083 - 2102
  • [7] Asynchronous Multichannel MAC Design With Difference-Set-Based Hopping Sequences
    Hou, Fen
    Cai, Lin X.
    Shen, Xuemin
    Huang, Jianwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (04) : 1728 - 1739
  • [8] Difference systems of sets and cyclotomy
    Mutoh, Yukiyasu
    Tonchev, Vladimir D.
    DISCRETE MATHEMATICS, 2008, 308 (14) : 2959 - 2969
  • [9] Linking systems of difference sets
    Jedwab, Jonathan
    Li, Shuxing
    Simon, Samuel
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (03) : 161 - 187
  • [10] Constructions of optimal difference systems of sets
    FAN CuiLing1
    2College of Mathematics and Information Science
    ScienceChina(Mathematics), 2011, 54 (01) : 173 - 184