Hardy type inequalities with weights dependent on the bessel functions

被引:5
|
作者
Nasibullin R. [1 ]
机构
[1] Kazan (Volga Region) Federal University, Kremlevskaya ul. 18, Kazan, Tatarstan
关键词
Bessel functions; convex domains; distance function; Hardy inequality; inradius; Lamb constant;
D O I
10.1134/S1995080216030185
中图分类号
学科分类号
摘要
We obtain a new sharp Hardy type inequality with an additional term. Using the Bessel functions we prove one dimensional inequality and their multidimensional analogs in domains with a finite inradius. The weight functions depend on the Bessel functions and Lamb’ s constants. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:274 / 283
页数:9
相关论文
共 50 条
  • [41] Superharmonic functions of Schrodinger operators and Hardy inequalities
    Miura, Yusuke
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) : 689 - 708
  • [42] On Hardy-type integral inequalities
    冷拓
    冯勇
    AppliedMathematicsandMechanics(EnglishEdition), 2013, 34 (10) : 1297 - 1304
  • [43] WEIGHTED GENERALIZED HARDY INEQUALITIES FOR NONINCREASING FUNCTIONS
    ANDERSEN, KF
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06): : 1121 - 1135
  • [44] On Perturbative Hardy-Type Inequalities
    Gesztesy, Fritz
    Nichols, Roger
    Pang, Michael M. H.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (01) : 128 - 149
  • [45] Mixed Norm Type Hardy Inequalities
    Fiorenza, Alberto
    Gupta, Babita
    Jain, Pankaj
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (04): : 630 - 644
  • [46] Sharp constants in hardy type inequalities
    Avkhadiev F.G.
    Russian Mathematics, 2015, 59 (10) : 53 - 56
  • [47] On Hardy-type integral inequalities
    Leng, Tuo
    Feng, Yong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (10) : 1297 - 1304
  • [48] Some Hardy Type Inequalities in Rn
    HAN Ya-zhou
    Department of Mathematics
    数学季刊, 2006, (03) : 322 - 325
  • [49] On Hardy-type integral inequalities
    Tuo Leng
    Yong Feng
    Applied Mathematics and Mechanics, 2013, 34 : 1297 - 1304
  • [50] Inequalities and Asymptotic Formulae Related to Generalizations of the Bessel Functions
    Paneva-Konovska, Jordanka
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS, 2010, 1293 : 157 - 164