In a previous work we proved a spectral multiplier theorem of Mihlin–Hörmander type for two-dimensional Grushin operators -∂x2-V(x)∂y2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\partial _x^2 - V(x) \partial _y^2$$\end{document}, where V is a doubling single-well potential, yielding the surprising result that the optimal smoothness requirement on the multiplier is independent of V. Here we refine this result, by replacing the L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^\infty $$\end{document}-Sobolev condition on the multiplier with a sharper L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document}-Sobolev condition. As a consequence, we obtain the sharp range of L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^1$$\end{document}-boundedness for the associated Bochner–Riesz means. The key new ingredient of the proof is a precise pointwise estimate in the transition region for eigenfunctions of one-dimensional Schrödinger operators with doubling single-well potentials.