An Optimal Multiplier Theorem for Grushin Operators in the Plane, II

被引:0
作者
Gian Maria Dall’Ara
Alessio Martini
机构
[1] Istituto Nazionale di Alta Matematica “Francesco Severi” Research Unit Scuola Normale Superiore,School of Mathematics
[2] University of Birmingham,undefined
[3] Dipartimento di Scienze Matematiche “G. L. Lagrange” Politecnico di Torino,undefined
来源
Journal of Fourier Analysis and Applications | 2022年 / 28卷
关键词
Grushin operator; Spectral multiplier; Schrödinger operator; 34L20; 35J70; 35H20; 42B15;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous work we proved a spectral multiplier theorem of Mihlin–Hörmander type for two-dimensional Grushin operators -∂x2-V(x)∂y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\partial _x^2 - V(x) \partial _y^2$$\end{document}, where V is a doubling single-well potential, yielding the surprising result that the optimal smoothness requirement on the multiplier is independent of V. Here we refine this result, by replacing the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-Sobolev condition on the multiplier with a sharper L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Sobolev condition. As a consequence, we obtain the sharp range of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-boundedness for the associated Bochner–Riesz means. The key new ingredient of the proof is a precise pointwise estimate in the transition region for eigenfunctions of one-dimensional Schrödinger operators with doubling single-well potentials.
引用
收藏
相关论文
共 21 条
  • [1] Chen P(2013)Sharp spectral multipliers for a new class of Grushin type operators J. Fourier Anal. Appl. 19 1274-1293
  • [2] Sikora A(2020)A robust approach to sharp multiplier theorems for Grushin operators Trans. Am. Math. Soc. 373 7533-7574
  • [3] Dall’Ara GM(2002)Plancherel-type estimates and sharp spectral multipliers J. Funct. Anal. 196 443-485
  • [4] Martini A(1982)Divergence of eigenfunction expansions J. Funct. Anal. 46 28-44
  • [5] Duong XT(2008)On the Erdélyi-Magnus-Nevai conjecture for Jacobi polynomials Constr. Approx. 28 113-125
  • [6] Ouhabaz EM(2017)Joint functional calculi and a sharp multiplier theorem for the Kohn Laplacian on spheres Math. Z. 286 1539-1574
  • [7] Sikora A(2014)A sharp multiplier theorem for Grushin operators in arbitrary dimensions Rev. Mat. Iberoam. 30 1265-1280
  • [8] Kenig CE(2022)Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type J. Eur. Math. Soc. 19 1075-1088
  • [9] Stanton RJ(2012)Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators Math. Res. Lett. 260 475-508
  • [10] Tomas PA(2008)Analysis of degenerate elliptic operators of Grušin type Math. Z. undefined undefined-undefined