Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol

被引:0
作者
Chandrakant P. [1 ]
Bisaria V.S. [1 ]
机构
[1] Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas
关键词
Bioconversion; Candida boidinii; Ethanol fermentation; Saccharomyces cerevisiae; Xylose; Xylose isomerase;
D O I
10.1007/BF02932350
中图分类号
学科分类号
摘要
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose mixture was carried out by the yeast Saccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose and S. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase from Candida boidinii, having an optimum pH and temperature range of 4.5-5.0 and 30-35°C respectively, was partially purified and immobilized on an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol by S. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed) and xylose conversion efficiency of 42.8%.
引用
收藏
页码:32 / 39
页数:7
相关论文
共 50 条
  • [41] Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum
    Hu, Cuimin
    Wu, Siguo
    Wang, Qian
    Jin, Guojie
    Shen, Hongwei
    Zhao, Zongbao K.
    BIOTECHNOLOGY FOR BIOFUELS, 2011, 4
  • [42] Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum
    Cuimin Hu
    Siguo Wu
    Qian Wang
    Guojie Jin
    Hongwei Shen
    Zongbao K Zhao
    Biotechnology for Biofuels, 4
  • [43] Enhanced Direct Ethanol Production by Cofactor Optimization of Cell Surface-Displayed Xylose Isomerase in Yeast
    Sasaki, Yusuke
    Takagi, Toshiyuki
    Motone, Keisuke
    Kuroda, Kouichi
    Ueda, Mitsuyoshi
    BIOTECHNOLOGY PROGRESS, 2017, 33 (04) : 1068 - 1076
  • [44] Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae
    Qi, Xin
    Zha, Jian
    Liu, Gao-Gang
    Zhang, Weiwen
    Li, Bing-Zhi
    Yuan, Ying-Jin
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [45] Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
    Lee, Sung-Haeng
    Kodaki, Tsutomu
    Park, Yong-Cheol
    Seo, Jin-Ho
    JOURNAL OF BIOTECHNOLOGY, 2012, 158 (04) : 184 - 191
  • [46] Understanding xylose isomerase from Burkholderia cenocepacia: insights into structure and functionality for ethanol production
    Igor P. V. Vieira
    Gabrielle T. Cordeiro
    Diego E. B. Gomes
    Rafael D. Melani
    Leonardo F. Vilela
    Gilberto B. Domont
    Rafael D. Mesquita
    Elis C. A. Eleutherio
    Bianca C. Neves
    AMB Express, 9
  • [47] Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
    Takahiro Bamba
    Tomohisa Hasunuma
    Akihiko Kondo
    AMB Express, 6
  • [48] Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways
    Cunha, Joana T.
    Soares, Pedro O.
    Romani, Aloia
    Thevelein, Johan M.
    Domingues, Lucilia
    BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
  • [49] Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways
    Joana T. Cunha
    Pedro O. Soares
    Aloia Romaní
    Johan M. Thevelein
    Lucília Domingues
    Biotechnology for Biofuels, 12
  • [50] Bioreactor and process design for 2G ethanol production from xylose using industrial S. cerevisiae and commercial xylose isomerase
    Sandri, Juliana P.
    Ramos, Marcio D. N.
    Perez, Caroline L.
    Mesquita, Thiago J. B.
    Zangirolami, Teresa C.
    Milessi, Thais S.
    BIOCHEMICAL ENGINEERING JOURNAL, 2023, 191