Feature Point Detection Utilizing the Empirical Mode Decomposition

被引:0
|
作者
Jesmin Farzana Khan
Kenneth Barner
Reza Adhami
机构
[1] University of Alabama in Huntsville,Department of Electrical and Computer Engineering
[2] University of Delaware,Department of Electrical and Computer Engineering
关键词
Repeatability Rate; Feature Point; Empirical Mode Decomposition; Full Article; Point Detection;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel contour-based method for detecting largely affine invariant interest or feature points. In the first step, image edges are detected by morphological operators, followed by edge thinning. In the second step, corner or feature points are identified based on the local curvature of the edges. The main contribution of this work is the selection of good discriminative feature points from the thinned edges based on the 1D empirical mode decomposition (EMD). Simulation results compare the proposed method with five existing approaches that yield good results. The suggested contour-based technique detects almost all the true feature points of an image. Repeatability rate, which evaluates the geometric stability under different transformations, is employed as the performance evaluation criterion. The results show that the performance of the proposed method compares favorably against the existing well-known methods.
引用
收藏
相关论文
共 50 条
  • [21] Adaptive Empirical Mode Decomposition for Bearing Fault Detection
    Van Tuan Do
    Le Cuong Nguyen
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2016, 62 (05): : 281 - 290
  • [22] Epileptic Seizure Detection Using Empirical Mode Decomposition
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 238 - 242
  • [23] A QRS detection algorithm based on the Empirical Mode Decomposition
    Li, Xiang-Jun
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2007, 36 (04): : 795 - 797
  • [24] Fault Feature Extraction of Gearboxes Using Ensemble Empirical Mode Decomposition
    Lin, Jinshan
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL I, 2010, : 271 - 274
  • [25] A Novel Empirical Variational Mode Decomposition for Early Fault Feature Extraction
    Xu, Bo
    Li, Huipeng
    IEEE ACCESS, 2022, 10 : 134826 - 134847
  • [26] Fault Feature Extraction of Gearboxes Using Ensemble Empirical Mode Decomposition
    Lin, Jinshan
    APPLIED INFORMATICS AND COMMUNICATION, PT I, 2011, 224 : 478 - 483
  • [27] Ensemble empirical mode decomposition based feature enhancement of cardio signals
    Janusauskas, Arturas
    Marozas, Vaidotas
    Lukosevicius, Arunas
    MEDICAL ENGINEERING & PHYSICS, 2013, 35 (08) : 1059 - 1069
  • [28] Application of Empirical Mode Decomposition for Feature Extraction from EEG Signals
    Kumari, S.
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), 2015,
  • [29] Noise-robust speech feature processing with empirical mode decomposition
    Wu, Kuo-Hau
    Chen, Chia-Ping
    Yeh, Bing-Feng
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2011, : 1 - 9
  • [30] Photoplethysmographic Signal Feature Extraction using an Empirical Mode Decomposition Approach
    Abeysekera, Saman S.
    Jaisankar, Baladjee
    2015 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2015,