Matchings in complete bipartite graphs and the r-Lah numbers

被引:0
作者
Gábor Nyul
Gabriella Rácz
机构
[1] University of Debrecen,Institute of Mathematics
来源
Czechoslovak Mathematical Journal | 2021年 / 71卷
关键词
-Lah number; number of matchings; complete bipartite graph; -Stirling number of the second kind; 05C70; 05C31; 05A19; 11B73;
D O I
暂无
中图分类号
学科分类号
摘要
We give a graph theoretic interpretation of r-Lah numbers, namely, we show that the r-Lah number ⌊nk⌋r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left\lfloor {\matrix{n \cr k \cr } } \right\rfloor _r}$$\end{document} counting the number of r-partitions of an (n + r)-element set into k + r ordered blocks is just equal to the number of matchings consisting of n − k edges in the complete bipartite graph with partite sets of cardinality n and n + 2r − 1 (0 ⩽ k ⩽ n, r ⩾ 1). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for r-Stirling numbers of the second kind.
引用
收藏
页码:947 / 959
页数:12
相关论文
共 32 条
[1]  
Belbachir H(2013)Cross recurrence relations for Ars Comb. 110 199-203
[2]  
Belkhir A(2014)-Lah numbers Ars Comb. 115 453-458
[3]  
Belbachir H(1984)Combinatorial identities for the Discrete Math. 49 241-259
[4]  
Bousbaa I E(1980)-Lah numbers I. Fibonacci Q. 18 147-162
[5]  
Broder A Z(2012)The Discrete Math. 312 2337-2348
[6]  
Carlitz L(2018)-Stirling numbers Appl. Anal. Discrete Math. 12 178-191
[7]  
Cheon G-S(2015)Weighted Stirling numbers of the first and second kind Eur. J. Comb. 43 32-54
[8]  
Jung J-H(2017)-Whitney numbers of Dowling lattices Util. Math. 105 137-139
[9]  
El-Desouky B S(2019)A Discrete Appl. Math. 255 222-233
[10]  
Shiha F A(1954)-analogue of Inst. Actuários Portug., Bol. 9 7-15