Properties of the Mittag-Leffler Relaxation Function

被引:0
作者
Mário N. Berberan-Santos
机构
[1] Instituto Superior Técnico,Centro de Química
来源
Journal of Mathematical Chemistry | 2005年 / 38卷
关键词
Mittag-Leffler function; Laplace transform; relaxation kinetics; 33E12 Mittag-Leffler functions and generalizations; 44A10 Laplace transform;
D O I
暂无
中图分类号
学科分类号
摘要
The Mittag-Leffler relaxation function, Eα(−x), with 0 ≤ α ≤ 1, which arises in the description of complex relaxation processes, is studied. A relation that gives the relaxation function in terms of two Mittag-Leffler functions with positive arguments is obtained, and from it a new form of the inverse Laplace transform of Eα(−x) is derived and used to obtain a new integral representation of this function, its asymptotic behaviour and a new recurrence relation. It is also shown that the fastest initial decay of Eα(−x) occurs for α =1/2, a result that displays the peculiar nature of the interpolation made by the Mittag-Leffler relaxation function between a pure exponential and a hyperbolic function.
引用
收藏
页码:629 / 635
页数:6
相关论文
共 33 条
[1]  
Mittag-Leffler G.M.(1903)undefined C. R. Acad. Sci. Paris (Ser. II) 136 70-undefined
[2]  
Mittag-Leffler G.M.(1903)undefined C. R. Acad. Sci. Paris (Ser. II) 137 554-undefined
[3]  
Miller K.S.(1993)undefined Integral Transform Spec. Funct. 1 41-undefined
[4]  
Gorenflo R.(2002)undefined Fract Calc. Appl. Anal. 5 491-undefined
[5]  
Loutchko J.(1995)undefined Biophys J. 68 46-undefined
[6]  
Luchko Y.(1995)undefined Phys Rev E 51 R848-undefined
[7]  
Glöckle W.G.(1996)undefined Physica A 232 180-undefined
[8]  
Nonnenmacher T.F.(2000)undefined Ferroelectrics 236 59-undefined
[9]  
Hilfer R.(2000)undefined Phys. Rep. 339 1-undefined
[10]  
Anton L.(2002)undefined Chem. Phys. 284 399-undefined