New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes

被引:0
|
作者
Hao Chen
机构
[1] Jinan University,College of Information Science and Technology/Cyber Security
来源
Designs, Codes and Cryptography | 2023年 / 91卷
关键词
Hermitian self-orthogonal code; MDS Quantum code; MDS entanglement-assisted quantum code; 94B15; 81T08;
D O I
暂无
中图分类号
学科分类号
摘要
The intersection C∩C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}\cap \textbf{C}^{\perp _H}$$\end{document} of a linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} and its Hermitian dual C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}^{\perp _H}$$\end{document} is called the Hermitian hull of this code. A linear code C⊂Fq2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{F}_{q^2}^n$$\end{document} satisfying C⊂C⊥H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C} \subset \textbf{C}^{\perp _H}$$\end{document} is called Hermitian self-orthogonal. Many Hermitian self-orthogonal codes were given for the construction of MDS quantum error correction codes (QECCs). In this paper we prove that for a nonnegative integer h satisfying 0≤h≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le h \le k$$\end{document}, a linear Hermitian self-orthogonal [n,k]q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n, k]_{q^2}$$\end{document} code is equivalent to a linear h-dimension Hermitian hull code. Therefore a lot of new MDS entanglement-assisted quantum error correction (EAQEC) codes can be constructed from previous known Hermitian self-orthogonal codes. Actually our method shows that previous constructed quantum MDS codes from Hermitian self-orthogonal codes can be transformed to MDS entanglement-assisted quantum codes with nonzero consumption parameter c directly. We prove that MDS EAQEC [[n,k,d;c]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[n, k, d; c]]_q$$\end{document} codes with nonzero c parameters and d≤n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le \frac{n+2}{2}$$\end{document} exist for arbitrary length n satisfying n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le q^2+1$$\end{document}. Moreover any QECC constructed from k-dimensional Hermitian self-orthogonal codes can be transformed to k different EAQEC codes. We also prove that MDS entanglement-assisted quantum codes exist for all lengths n≤q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le q^2+1$$\end{document}.
引用
收藏
页码:2665 / 2676
页数:11
相关论文
共 13 条
  • [1] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Chen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2665 - 2676
  • [2] Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes
    Li, Yang
    Zhu, Shixin
    Zhang, Yanhui
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)
  • [3] Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes
    Yang Li
    Shixin Zhu
    Yanhui Zhang
    Quantum Information Processing, 23
  • [4] Construction of Hermitian Self-Orthogonal Codes and Application
    Ren, Yuezhen
    Li, Ruihu
    Song, Hao
    MATHEMATICS, 2024, 12 (13)
  • [5] Constructing self-orthogonal and Hermitian self-orthogonal codes via weighing matrices and orbit matrices
    Crnkovic, Dean
    Egan, Ronan
    Svob, Andrea
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 64 - 77
  • [6] On the Construction of Hermitian Self-Orthogonal Codes Over F9 and Their Application
    Li, Zhihao
    Li, Ruihu
    Guan, Chaofeng
    Song, Hao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (09)
  • [7] Hermitian Self-Orthogonal Constacyclic Codes over F4m
    Guan Q.-Q.
    Kai X.-S.
    Zhu S.-X.
    Guan, Qian-Qing (gqianqing@sina.cn), 2017, Chinese Institute of Electronics (45): : 1469 - 1474
  • [8] New q-ary quantum MDS codes with distances bigger than q/2
    He, Xianmang
    Xu, Liqing
    Chen, Hao
    QUANTUM INFORMATION PROCESSING, 2016, 15 (07) : 2745 - 2758
  • [9] CONSTRUCTING NEW Q-RAY QUANTUM MDS CODES WITH DISTANCES BIGGER THAN q/2 FROM GENERATOR MATRICES
    He, Xianmang
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (3-4) : 223 - 230
  • [10] New q-ary quantum MDS codes of length strictly larger than q+1
    Kircali, Mustafa
    Ozbudak, Ferruh
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)