Infinitely many geometrically distinct solutions for periodic Schrödinger–Poisson systems

被引:0
作者
Jing Chen
Ning Zhang
机构
[1] Hunan University of Science and Technology,School of Mathematics and Computing Sciences
[2] Central South University,School of Mathematics and Statistics
来源
Boundary Value Problems | / 2019卷
关键词
Schrödinger–Poisson system; Nehari manifold; Ground state; Geometrically distinct solutions; 35J10; 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is dedicated to studying the following Schrödinger–Poisson system: {−△u+V(x)u+K(x)ϕ(x)u=f(x,u),x∈R3,−△ϕ=K(x)u2,x∈R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} -\triangle u+V(x)u+K(x)\phi (x)u=f(x, u), \quad x\in {\mathbb {R}}^{3}, \\ -\triangle \phi =K(x)u^{2}, \quad x\in {\mathbb {R}}^{3}, \end{cases} $$\end{document} where V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document}, K(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K(x)$\end{document}, and f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x, u)$\end{document} are periodic in x. By using the non-Nehari manifold method, we establish the existence of ground state solutions for the above problem under some weak assumptions. Moreover, when f is odd in u, we prove that the above problem admits infinitely many geometrically distinct solutions. Our results improve and complement some related literature.
引用
收藏
相关论文
共 31 条
[21]   Existence of Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Asymptotically Periodic Potential [J].
Yan-Fang Xue ;
Li-Ju Yu ;
Jian-Xin Han .
Qualitative Theory of Dynamical Systems, 2022, 21
[22]   Ground state solutions for some Schrodinger-Poisson systems with periodic potentials [J].
Sun, Jijiang ;
Ma, Shiwang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) :2119-2149
[23]   Multiplicity of solutions for Schrödinger systems with critical exponent via Ljusternik–Schnirelman theory [J].
Chergui T. ;
Tas S. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2) :267-289
[24]   EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DEGENERATE AND SINGULAR ELLIPTIC SYSTEMS WITH INDEFINITE CONCAVE NONLINEARITIES [J].
Nguyen Thanh Chung .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
[25]   Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system with potential vanishing at infinity [J].
Da-Bin Wang ;
Hua-Bo Zhang ;
Yu-Mei Ma ;
Wen Guan .
Journal of Applied Mathematics and Computing, 2019, 61 :611-634
[26]   Geometrically distinct solutions for Klein-Gordon-Maxwell systems with super-linear nonlinearities [J].
Chen, Sitong ;
Tang, Xianhua .
APPLIED MATHEMATICS LETTERS, 2019, 90 :188-193
[27]   Radial ground state sign-changing solutions for a class of asymptotically cubic or super-cubic Schrödinger–Poisson type problems [J].
Sitong Chen ;
Xianhua Tang .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 :627-643
[28]   Ground state solutions for the nonlinear Schrodinger-Poisson systems with sum of periodic and vanishing potentials [J].
Xie, Weihong ;
Chen, Haibo ;
Shi, Hongxia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) :144-158
[29]   NON-TRIVIAL SOLUTIONS OF FRACTIONAL SCHRODINGER-POISSON SYSTEMS WITH SUM OF PERIODIC AND VANISHING POTENTIALS [J].
Yu, Mingzhu ;
Chen, Haibo .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
[30]   Positive bound state solutions for non-autonomous Schrödinger–Poisson systems with 2<p<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<4$$\end{document} [J].
Jian Zhang ;
Juntao Sun ;
Tsung-fang Wu .
Zeitschrift für angewandte Mathematik und Physik, 2021, 72 (4)