An Algorithm to Compute the Nucleolus of Shortest Path Games

被引:0
作者
Mourad Baïou
Francisco Barahona
机构
[1] CNRS and Université Clermont Auvergne,
[2] IBM T. J. Watson research Center,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Cooperative games; Shortest path games; Nucleolus;
D O I
暂无
中图分类号
学科分类号
摘要
We study a type of cooperative games introduced in Fragnelli et al. (Math Methods Oper Res 52(2):251–264, 2000) called shortest path games. They arise on a network that has two special nodes s and t. A coalition corresponds to a set of arcs and it receives a reward if it can connect s and t. A coalition also incurs a cost for each arc that it uses to connect s and t, thus the coalition must choose a path of minimum cost among all the arcs that it controls. These games are relevant to logistics, communication, or supply-chain networks. We give a polynomial combinatorial algorithm to compute the nucleolus. This vector reflects the relative importance of each arc to ensure the connectivity between s and t.
引用
收藏
页码:3099 / 3113
页数:14
相关论文
共 50 条
[21]   A polynomial time algorithm for computing the nucleolus for a class of disjunctive games with a permission structure [J].
René van den Brink ;
Ilya Katsev ;
Gerard van der Laan .
International Journal of Game Theory, 2011, 40 :591-616
[22]   Characterization sets for the nucleolus in balanced games [J].
Solymosi, Tamas ;
Sziklai, Balazs .
OPERATIONS RESEARCH LETTERS, 2016, 44 (04) :520-524
[23]   Externalities and the (pre)nucleolus in cooperative games [J].
alvarez-Mozos, Mikel ;
Ehlers, Lars .
MATHEMATICAL SOCIAL SCIENCES, 2024, 128 :10-15
[24]   Noncooperative foundations of the nucleolus in majority games [J].
Montero, M .
GAMES AND ECONOMIC BEHAVIOR, 2006, 54 (02) :380-397
[25]   Computing the nucleolus of cyclic permutation games [J].
Solymosi, T ;
Raghavan, TES ;
Tijs, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2005, 162 (01) :270-280
[26]   A note on assignment games with the same nucleolus [J].
F. Javier Martínez-de-Albéniz ;
Carlos Rafels ;
Neus Ybern .
TOP, 2019, 27 :187-198
[27]   A note on assignment games with the same nucleolus [J].
Javier Martinez-de-Albeniz, F. ;
Rafels, Carlos ;
Ybern, Neus .
TOP, 2019, 27 (02) :187-198
[28]   On the core, nucleolus and bargaining sets of cooperative games with fuzzy payoffs [J].
Zhang, Xia ;
Sun, Hao ;
Xu, Genjiu ;
Hou, Dongshuang .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) :6129-6142
[29]   An algorithm for computing the nucleolus of disjunctive non-negative additive games with an acyclic permission structure [J].
van den Brink, Rene ;
Katsev, Ilya ;
van der Laan, Gerard .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (02) :817-826
[30]   On the core and nucleolus of directed acyclic graph games [J].
Sziklai, Balazs ;
Fleiner, Tamas ;
Solymosi, Tamas .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :243-271