Noncommutative integrable systems on b-symplectic manifolds

被引:0
|
作者
Anna Kiesenhofer
Eva Miranda
机构
[1] Universitat Politècnica de Catalunya,Department of Mathematics
[2] EPSEB,undefined
[3] Barcelona Graduate School of Mathematics,undefined
[4] Campus de Bellaterra,undefined
[5] Edifici C,undefined
来源
Regular and Chaotic Dynamics | 2016年 / 21卷
关键词
Poisson manifolds; -symplectic manifolds; noncommutative integrable systems; action-angle coordinates; 53D05; 53D17; 70H06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study noncommutative integrable systems on b-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering noncommutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and prove an action-angle theorem for noncommutative integrable systems on a b-symplectic manifold in a neighborhood of a Liouville torus inside the critical set of the Poisson structure associated to the b-symplectic structure.
引用
收藏
页码:643 / 659
页数:16
相关论文
共 50 条