A toy model for higher spin Dirac operators

被引:0
作者
D. Eelbode
L. Van de Voorde
机构
[1] Ghent University,
来源
Physics of Atomic Nuclei | 2010年 / 73卷
关键词
Atomic Nucleus; High Spin; Dirac Operator; Irreducible Module; Kernel Space;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the higher spin Dirac operator Q2,1 acting on functions taking values in an irreducible representation space for so(m) with highest weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (\tfrac{5} {2},\tfrac{3} {2},\tfrac{1} {2},...,\tfrac{1} {2}) $$\end{document}. This operator acts as a toy model for generalizations of the classical Rarita—Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.
引用
收藏
页码:282 / 287
页数:5
相关论文
共 22 条
  • [1] Branson T.(1997)undefined Anal. 151 334-undefined
  • [2] Funct J.(1976)undefined Quart. J. Math. 27 371-undefined
  • [3] Fegan H. D.(1968)undefined Amer. J. Math. 90 163-undefined
  • [4] Stein E. W.(2001)undefined J. Funct. Anal. 185 425-undefined
  • [5] Weiss G.(2001)undefined Ann. Global Anal. Geom 21 215-undefined
  • [6] Bureš J.(2000)undefined Complex Variables Theory Appl 43 77-undefined
  • [7] Sommen F.(1938)undefined Phys. Rev. 54 1114-undefined
  • [8] Souček V.(1938)undefined Proc. R. Soc. London, Ser. A 166 127-undefined
  • [9] Van Lancker P.(1936)undefined Acad. R. Belg.Cl. Sci. Mém. Collect 8 16 (2)-undefined
  • [10] Bureš J.(1941)undefined Phys. Rev 60 61-undefined