Some Classes of Nilpotent Associative Algebras

被引:0
作者
I. A. Karimjanov
M. Ladra
机构
[1] Andijan State University,Department of Mathematics, Institute of Mathematics
[2] University of Santiago de Compostela,undefined
来源
Mediterranean Journal of Mathematics | 2020年 / 17卷
关键词
Associative algebras; nilpotent; null-filiform; naturally graded; filiform; quasi-filiform; characteristic sequence; left multiplication operator; 16S50; 16W50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we classify filiform associative algebras of degree p over a field of characteristic zero. Moreover, over an algebraically closed field of characteristic zero, we also classify filiform nilpotent associative algebras and naturally graded quasi-filiform nilpotent associative algebras, described through the characteristic sequence C(A)=(n-2,1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C({\mathcal {A}})=(n-2,1,1)$$\end{document} or C(A)=(n-2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C({\mathcal {A}})=(n-2,2)$$\end{document}.
引用
收藏
相关论文
共 35 条
  • [1] Ancochea Bermúdez JM(2011)Classification of Lie algebras with naturally graded quasi-filiform nilradicals J. Geom. Phys. 61 2168-2186
  • [2] Campoamor-Stursberg R(2001)On some classes of nilpotent Leibniz algebras Sib. Math. J. 42 15-24
  • [3] García Vergnolle L(2009)Naturally graded quasi-filiform Leibniz algebras J. Symb. Comput. 44 527-539
  • [4] Ayupov ShA(2010)Naturally graded 2-filiform Leibniz algebras Commun. Algebra 38 3671-3685
  • [5] Omirov BA(1898)Les groupes bilinéaires et les systèmes de nombres complexes Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 12 B65-B99
  • [6] Camacho LM(2018)Classification of nilpotent associative algebras of small dimension Int. J. Algebra Comput. 28 133-161
  • [7] Gómez JR(2015)Nilpotent associative algebras and coclass theory J. Algebra 434 249-260
  • [8] Gónzalez AJ(2017)Coclass theory for finite nilpotent associative algebras: algorithms and a periodicity conjecture Exp. Math. 26 267-274
  • [9] Omirov BA(1903)Theorie der hyperkomplexen Größen I. II Sitz. Kön. Preuss. Akad. Wiss. 504–537 634-645
  • [10] Camacho LM(2009)Complex structures on quasi-filiform Lie algebras J. Lie Theory 19 251-265