A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET

被引:0
|
作者
Kobra Etminani
Amira Soliman
Anette Davidsson
Jose R. Chang
Begoña Martínez-Sanchis
Stefan Byttner
Valle Camacho
Matteo Bauckneht
Roxana Stegeran
Marcus Ressner
Marc Agudelo-Cifuentes
Andrea Chincarini
Matthias Brendel
Axel Rominger
Rose Bruffaerts
Rik Vandenberghe
Milica G. Kramberger
Maja Trost
Nicolas Nicastro
Giovanni B. Frisoni
Afina W. Lemstra
Bart N. M. van Berckel
Andrea Pilotto
Alessandro Padovani
Silvia Morbelli
Dag Aarsland
Flavio Nobili
Valentina Garibotto
Miguel Ochoa-Figueroa
机构
[1] Halmstad University,Center for Applied Intelligent Systems Research (CAISR)
[2] Linköping University,Department of Clinical Physiology, Department of Health, Medicine and Caring Sciences
[3] National Cheng Kung University in Tainan,Department of Nuclear Medicine, Medical Imaging Area
[4] Hospital Universitari i Politècnic La Fe,Servicio de Medicina Nuclear, Hospital de La Santa Creu I Sant Pau
[5] Universitat Autònoma de Barcelona,Nuclear Medicine Unit
[6] IRCCS Ospedale Policlinico San Martino,Department of Diagnostic Radiology
[7] Linköping University Hospital,Department of Medical Physics
[8] Linköping University Hospital,Department of Nuclear Medicine
[9] National Institute of Nuclear Physics (INFN),Department of Nuclear Medicine, Inselspital
[10] University Hospital,Department of Neurosciences
[11] LMU Munich,Neurology Department
[12] University Hospital Bern,Biomedical Research Institute
[13] Laboratory for Cognitive Neurology,Department of Neurology
[14] University Hospitals Leuven,Faculty of Medicine
[15] Hasselt University,Department of Clinical Neurosciences
[16] University Medical Centre,LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry
[17] University of Ljubljana,Department of Radiology & Nuclear Medicine
[18] Geneva University Hospitals,Neurology Unit, Department of Clinical and Experimental Sciences
[19] University Hospitals,Department of Health Sciences
[20] Department of Neurology,Centre for Age
[21] Alzheimer Center,Related Medicine (SESAM)
[22] Amsterdam UMC,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience
[23] location VUmc,Department of Neuroscience (DINOGMI)
[24] University of Brescia,Clinical Neurology
[25] Parkinson’s Disease Rehabilitation Centre,Division of Nuclear Medicine and Molecular Imaging
[26] University of Genoa,Center for Medical Image Science and Visualization (CMIV)
[27] Stavanger University Hospital,undefined
[28] King’s College London,undefined
[29] University of Genoa,undefined
[30] IRCCS Ospedale Policlinico San Martino,undefined
[31] University Hospitals of Geneva and NIMTLab,undefined
[32] Faculty of Medicine,undefined
[33] University of Geneva,undefined
[34] Linköping University,undefined
来源
European Journal of Nuclear Medicine and Molecular Imaging | 2022年 / 49卷
关键词
Artificial intelligence; Deep learning; FDG PET; Alzheimer’s disease; Mild cognitive impairment; Dementia with Lewy bodies;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:563 / 584
页数:21
相关论文
共 50 条
  • [1] A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET
    Etminani, Kobra
    Soliman, Amira
    Davidsson, Anette
    Chang, Jose R.
    Martinez-Sanchis, Begona
    Byttner, Stefan
    Camacho, Valle
    Bauckneht, Matteo
    Stegeran, Roxana
    Ressner, Marcus
    Agudelo-Cifuentes, Marc
    Chincarini, Andrea
    Brendel, Matthias
    Rominger, Axel
    Bruffaerts, Rose
    Vandenberghe, Rik
    Kramberger, Milica G.
    Trost, Maja
    Nicastro, Nicolas
    Frisoni, Giovanni B.
    Lemstra, Afina W.
    van Berckel, Bart N. M.
    Pilotto, Andrea
    Padovani, Alessandro
    Morbelli, Silvia
    Aarsland, Dag
    Nobili, Flavio
    Garibotto, Valentina
    Ochoa-Figueroa, Miguel
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) : 563 - 584
  • [2] 18F-FDG PET in Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment
    Deleva, N.
    Dimitrov, I.
    Ivanov, B.
    Klisarova, A.
    Bochev, P.
    NEUROSONOLOGY AND CEREBRAL HEMODYNAMICS, 2011, 7 (01): : 19 - 27
  • [3] A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain
    Ding, Yuming
    Sohn, Jae Ho
    Kawczynski, Michael G.
    Trivedi, Hari
    Harnish, Roy
    Jenkins, Nathaniel W.
    Lituiev, Dmytro
    Copeland, Timothy P.
    Aboian, Mariam S.
    Aparici, Carina Mari
    Behr, Spencer C.
    Flavell, Robert R.
    Huang, Shih-Ying
    Zalocusky, Kelly A.
    Nardo, Lorenzo
    Seo, Youngho
    Hawkins, Randall A.
    Pampaloni, Miguel Hernandez
    Hadley, Dexter
    Franc, Benjamin L.
    RADIOLOGY, 2019, 290 (02) : 456 - 464
  • [4] Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias
    Mosconi, Lisa
    Tsui, Wai H.
    Herholz, Karl
    Pupi, Alberto
    Drzezga, Alexander
    Lucignani, Giovanni
    Reiman, Eric M.
    Holthoff, Vjera
    Kalbe, Elke
    Sorbi, Sandro
    Diehl-Schmid, Janine
    Perneczky, Robert
    Clerici, Francesca
    Caselli, Richard
    Beuthien-Baurnann, Bettina
    Kurz, Alexander
    Minoshima, Satoshi
    de Leon, Mony J.
    JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (03) : 390 - 398
  • [5] 18F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI)
    Smailagic, Nadja
    Vacante, Marco
    Hyde, Chris
    Martin, Steven
    Ukoumunne, Obioha
    Sachpekidis, Christos
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2015, (01):
  • [6] Deep-Learning Radiomics for Discrimination Conversion of Alzheimer's Disease in Patients With Mild Cognitive Impairment: A Study Based on 18F-FDG PET Imaging
    Zhou, Ping
    Zeng, Rong
    Yu, Lun
    Feng, Yabo
    Chen, Chuxin
    Li, Fang
    Liu, Yang
    Huang, Yanhui
    Huang, Zhongxiong
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [7] Contrastive Learning for Prediction of Alzheimer's Disease Using Brain 18F-FDG PET
    Chen, Yonglin
    Wang, Huabin
    Zhang, Gong
    Liu, Xiao
    Huang, Wei
    Han, Xianjun
    Li, Xuejun
    Martin, Melanie
    Tao, Liang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (04) : 1735 - 1746
  • [8] A 3D convolutional neural network to classify subjects as Alzheimer's disease, frontotemporal dementia or healthy controls using brain 18F-FDG PET
    Rogeau, Antoine
    Hives, Florent
    Bordier, Cecile
    Lahousse, Helene
    Roca, Vincent
    Lebouvier, Thibaud
    Pasquier, Florence
    Huglo, Damien
    Semah, Franck
    Lopes, Renaud
    NEUROIMAGE, 2024, 288
  • [9] 18F-FDG PET for Prediction of Conversion to Alzheimer's Disease Dementia in People with Mild Cognitive Impairment: An Updated Systematic Review of Test Accuracy
    Smailagic, Nadja
    Lafortune, Louise
    Kelly, Sarah
    Hyde, Chris
    Brayne, Carol
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 64 (04) : 1175 - 1194
  • [10] [18F]FDG-PET study in dementia with Lewy bodies and Alzheimer's disease
    Okamura, N
    Arai, H
    Higuchi, M
    Tashiro, M
    Matsui, T
    Hu, XS
    Takeda, A
    Itoh, M
    Sasaki, H
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2001, 25 (02) : 447 - 456