Randomized parameterized algorithms for P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2$$\end{document}-Packing and Co-Path Packing problems

被引:1
作者
Qilong Feng
Jianxin Wang
Shaohua Li
Jianer Chen
机构
[1] Central South University,School of Information Science and Engineering
[2] Texas A&M University,Department of Computer Science
关键词
-Packing; Co-Path Packing; Randomized algorithm;
D O I
10.1007/s10878-013-9691-z
中图分类号
学科分类号
摘要
In this paper, we study the Parameterized P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2$$\end{document}-Packing problem and Parameterized Co-Path Packing problem from random perspective. For the Parameterized P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2$$\end{document}-Packing problem, based on the structure analysis of the problem and using random partition technique, a randomized parameterized algorithm of running time O∗(6.75k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*(6.75^k)$$\end{document} is obtained, improving the current best result O∗(8k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*(8^k)$$\end{document}. For the Parameterized Co-Path Packing problem, we firstly study the kernel and randomized algorithm for the degree-bounded instance, where each vertex in the instance has degree at most three. A kernel of size 20k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20k$$\end{document} and a randomized algorithm of running time O∗(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*(2^k)$$\end{document} are given for the Parameterized Co-Path Packing problem with bounded degree constraint. By applying iterative compression technique and based on the randomized algorithm for degree bounded problem, a randomized algorithm of running time O∗(3k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*(3^k)$$\end{document} is given for the Parameterized Co-Path Packing problem.
引用
收藏
页码:125 / 140
页数:15
相关论文
共 16 条
  • [1] Chen J(2008)Improved parameterized set splitting algorithms: a probabilistic approach Algorithmica 54 472-489
  • [2] Lu S(2008)A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome PLoS Comput Biol 4 e1000234-491
  • [3] Chauve C(2003)Approximation algorithms for the test cover problem Math Program Ser B 98 477-341
  • [4] Tannier E(2009)A parameterized perspective on packing paths of length two J Comb Optim 18 319-979
  • [5] De Bontridder K(1999)Approximating node-deletion problems for matroidal properties J Algorithms 31 211227-445
  • [6] Halldórsson B(2006)An approximation algorithm for maximum triangle packing Discret Appl Math 154 971-undefined
  • [7] Lenstra J(2006)Looking at the stars Theor Comput Sci 351 437-undefined
  • [8] Ravi R(undefined)undefined undefined undefined undefined-undefined
  • [9] Stougie L(undefined)undefined undefined undefined undefined-undefined
  • [10] Fernau H(undefined)undefined undefined undefined undefined-undefined