A Mathematical Analysis of the Intermediate Behaviour of the Energy Cascades of Quantum Turbulence

被引:0
作者
David Jou
Michele Sciacca
机构
[1] Universitat Autònoma de Barcelona,Departament de Física
[2] Institut d’Estudis Catalans,Dipartimento di Ingegneria
[3] Università di Palermo,undefined
来源
Acta Applicandae Mathematicae | 2023年 / 184卷
关键词
Superfluid helium; Heat transfer; Quantum turbulence; Energy spectrum; Kolmogorov cascade; Quantized vortices;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a mathematical interpolation between several regimes of energy cascade in quantum turbulence in He II. On the basis of a physical interpretation of such mathematical expression we discuss in which conditions it is expected to appear an intermediate k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k^{2}$\end{document} regime (equipartition regime) in the transition region between the hydrodynamic regime and the Kelvin wave regime (namely, between the k−5/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k^{-5/3}$\end{document} and k−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k^{-1}$\end{document} regions in coflow situations and between the k−3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k^{-3}$\end{document} and k−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k^{-1}$\end{document} regions in counterflow situations). It is seen that if the energy rate transfer from the hydrodynamic region to the Kelvin wave region is sufficiently slow, such equipartition region will be present, but for higher values of such energy rate transfer it will disappear. For high rates of the energy rate transfer, the transition regime between the hydrodynamic and the Kelvin wave regimes will be monotonous, characterized by a negative exponent of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k$\end{document} between −5/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-5/3$\end{document} and −1 (or between −3 and −1), instead of the positive 2 exponent of the equipartition regime.
引用
收藏
相关论文
共 140 条
  • [1] Babuin S.(2016)Coexistence and interplay of quantum and classical turbulence in superfluid He 4: decay, velocity decoupling, and counterflow energy spectra Phys. Rev. B 94 29-56
  • [2] L’vov V.(2015)Energy and vorticity spectra in turbulent superfluid He 4 from t=0 to t Phys. Rev. B 91 37-1271
  • [3] Pomyalov A.(1998)Local investigation of superfluid turbulence Europhys. Lett. 43 1267-385
  • [4] Skrbek L.(2007)Vortex density spectrum of quantum turbulence Europhys. Lett. 77 382-202
  • [5] Varga E.(2012)Energy cascade and the four-fifths law in superfluid turbulence Europhys. Lett. 97 85-71
  • [6] Boué L.(2010)Turbulent velocity spectra in superfluid flows Phys. Fluids 22 1-238
  • [7] L’vov V.S.(2021)Phenomenology of quantum turbulence in superfluid helium Proc. Natl. Acad. Sci. 118 191-515
  • [8] Nagar Y.(2021)Experimental signature of quantum turbulence in velocity spectra? New J. Phys. 23 493-231
  • [9] Nazarenko S.V.(2007)Quantum turbulence in a trapped Bose-Einstein condensate Phys. Rev. A 76 167-444
  • [10] Pomyalov A.(2009)Emergence of turbulence in an oscillating Bose-Einstein condensate Phys. Rev. Lett. 103 419-2183