Higher loop mixed correlators in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 SYM

被引:0
作者
Luis F. Alday
Johannes M. Henn
Jakub Sikorowski
机构
[1] University of Oxford,Mathematical Institute
[2] Institute for Advanced Study,Rudolf Peierls Centre for Theoretical Physics
[3] University of Oxford,undefined
关键词
Duality in Gauge Field Theories; Scattering Amplitudes; Wilson; ’t Hooft and Polyakov loops;
D O I
10.1007/JHEP03(2013)058
中图分类号
学科分类号
摘要
We compute analytically the two-loop contribution to the correlation function of the Lagrangian with a four-sided light-like (or null) Wilson loop in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super Yang-Mills. As a non-trivial test of our result, we reproduce the three-loop value of the cusp anomalous dimension upon integration over the insertion point of the Lagrangian. The method we used involved calculating a dual scattering amplitude. Moreover, we give a simple representation of the loop integrand of the latter in twistor variables.
引用
收藏
相关论文
共 77 条
[21]  
Eden B(2012)Some analytic results for two-loop scattering amplitudes JHEP 10 026-undefined
[22]  
Korchemsky GP(2002)Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in Nucl. Phys. B 636 99-undefined
[23]  
Sokatchev E(2002) = 4 SYM JHEP 06 007-undefined
[24]  
Alday LF(2011)The soft-collinear bootstrap: JHEP 12 006-undefined
[25]  
Henn JM(2000) = 4 Yang-Mills amplitudes at six and seven loops Int. J. Mod. Phys. A 15 725-undefined
[26]  
Plefka J(2006)Higgs-regularized three-loop four-gluon amplitude in Comput. Phys. Commun. 174 222-undefined
[27]  
Schuster T(1999) = 4 SYM: exponentiation and Regge limits Int. J. Mod. Phys. A 14 2037-undefined
[28]  
Henn JM(undefined)Using differential equations to compute two loop box integrals undefined undefined undefined-undefined
[29]  
Moch S(undefined)Uniqueness of two-loop master contours undefined undefined undefined-undefined
[30]  
Naculich SG(undefined)A semiclassical limit of the gauge/string correspondence undefined undefined undefined-undefined