共 29 条
[21]
Efficient associative algorithm to find the least spanning tree of a graph with a node degree constraint
[J].
Cybernetics and Systems Analysis,
1998, 34
:77-85
[23]
A new sufficient condition for a tree T to have the (2, 1)-total number Δ+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta +1$$\end{document}
[J].
Journal of Combinatorial Optimization,
2017, 33 (3)
:1011-1020
[24]
Fixed points of mappings satisfying contractive condition of integral type in modular spaces endowed with a graph
[J].
Fixed Point Theory and Applications,
2014
[25]
Fixed points of mappings satisfying contractive condition of integral type in modular spaces endowed with a graph
[J].
FIXED POINT THEORY AND APPLICATIONS,
2014,
[26]
Finding the k most vital edges with respect to minimum spanning tree
[J].
Acta Informatica,
1999, 36
:405-424
[27]
An improved Fan-Type degree condition for k-linked graphs
[J].
ARS COMBINATORIA,
2015, 121
:275-279
[28]
A sufficient condition for a tree to be (Δ+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\Delta +1)$$\end{document}-(2,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2,1)$$\end{document}-totally labelable
[J].
Journal of Combinatorial Optimization,
2016, 31 (2)
:893-901
[29]
For a graph G and a family of graphs F, the Turan number ex(G, F) is the maximum number of edges an F-free subgraph of G can have. We prove that ex(G, F) ≥ ex(Kr, F) if the chromatic number of G is r and F is a family of connected graphs. This result answers a question raised by Briggs and Cox ["Inverting the Turan problem', Discrete Math. 342(7) (2019), 1865-1884] about the inverse Turan number for all connected graphs.
[J].
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY,
2023, 108 (02)
:200-204