Self-dual almost-Kähler four-manifolds

被引:0
作者
Kim, Inyoung
机构
关键词
Self-dual; Almost-K & auml; hler; Scalar curvature; J-invariant ricci tensor; SYMPLECTIC; 4-MANIFOLDS; KAHLER; CURVATURE; MANIFOLDS; CONJECTURE; METRICS;
D O I
10.1007/s10455-024-09958-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify compact self-dual almost-K & auml;hler four-manifolds of positive type and zero type. In particular, using LeBrun's result, we show that any self-dual almost-K & auml;hler metric on a manifold which is diffeomorphic to CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}{{\mathbb {P}}}_{2}$$\end{document} is the Fubini-Study metric on CP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}{{\mathbb {P}}}_{2}$$\end{document} up to rescaling. In case of negative type, we classify compact self-dual almost-K & auml;hler four-manifolds with J-invariant ricci tensor.
引用
收藏
页数:18
相关论文
共 35 条