Feature selection for set-valued data based on D–S evidence theory

被引:0
作者
Yini Wang
Sichun Wang
机构
[1] Guangxi University of Finance and Economics,Guangxi Key Laboratory of Cross
来源
Artificial Intelligence Review | 2023年 / 56卷
关键词
Set-valued data; SVIS; D–S evidence theory; Feature selection; Statistical test;
D O I
暂无
中图分类号
学科分类号
摘要
Feature selection is one basic and critical technology for data mining, especially in current “big data era”. Rough set theory is sensitive to noise in feature selection due the stringent condition of an equivalence relation. However, D–S evidence theory is flexible to measure uncertainty of information. In this paper, we introduce robust feature evaluation metrics “belief function” and “plausibility function” into feature selection algorithm to avoid the defect that classification effect is affected by noise such as missing values, confusing data, etc. Firstly, similarity between information values in a set-valued information system (SVIS) is introduced and a variable parameter to control the similarity of samples is given. Secondly, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}-lower and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}-upper approximations in an SVIS are put forward. Then, the concepts of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}-belief function, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}-plausibility function, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}-belief reduction and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}-plausibility reduction are given. Moreover, several feature selection algorithms based on the D–S evidence theory in an SVIS are proposed. Experimental results and statistical test show that the proposed metric is insensitive to noise because it comprehensively considers the evidence at all levels, and the proposed algorithms are more robust than several state-of-the-art feature selection algorithms.
引用
收藏
页码:2667 / 2696
页数:29
相关论文
共 103 条
[1]  
Alexander I(2010)Practical approaches to principal component analysis in the presence of missing values J Mach Learn Res 11 1957-2000
[2]  
Tapani R(1974)A dendrite method for cluster analysis Commun Stat 3 1-27
[3]  
Calinski T(2020)Attribute group for attribute reduction Inf Sci 535 64-80
[4]  
Harabasz J(2018)Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets IEEE Trans Fuzzy Syst 26 2175-2187
[5]  
Chen Y(1979)A cluster separation measure IEEE Trans Pattern Anal Mach Intell 1 224-227
[6]  
Liu KY(1967)Upper and lower probabilities induced by a multivalued mapping Ann Math Stat 38 325-339
[7]  
Song JJ(2005)Combining belief functions based on distance of evidence Decis Support Syst 38 489-493
[8]  
Fujita H(1988)Representation and combination of uncertainty with belief functions and possibility measures Comput Intell 4 244-264
[9]  
Yang XB(2020)A heuristic representation learning based on evidential memberships: case study of UCI-SPECTF Int J Approx Reason 120 125-137
[10]  
Qian YH(2017)Dynamic variable precision rough set approach for probabilistic set-valued information systems Knowl-Based Syst 122 131-147