A note on the A-numerical radius of operators in semi-Hilbert spaces

被引:0
作者
Kais Feki
机构
[1] University of Sfax,
来源
Archiv der Mathematik | 2020年 / 115卷
关键词
Positive operator; Numerical radius; Semi-inner product; 46C05; 47A05; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a positive bounded linear operator acting on a complex Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. Our aim in this paper is to prove some A-numerical radius inequalities of bounded linear operators acting on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} when an additional semi-inner product structure induced by A is considered. In particular, an alternative proof of a recent result proved in Moslehian et al. (Linear Algebra Appl 591:299–321 2020) is given.
引用
收藏
页码:535 / 544
页数:9
相关论文
共 24 条
[1]  
Arias ML(2008)Partial isometries in semi-Hilbertian spaces Linear Algebra Appl. 428 1460-1475
[2]  
Corach G(2008)Metric properties of projections in semi-Hilbertian spaces Integral Equation Operator Theory 62 11-28
[3]  
Gonzalez MC(2018)Joint numerical ranges of operators in semi-Hilbertian spaces Linear Algebra Appl. 555 266-284
[4]  
Arias ML(2020)Joint normality of operators in semi-Hilbertian spaces Linear Multilinear Algebra 68 845-866
[5]  
Corach G(1966)On majorization, factorization and range inclusion of operators in Hilbert space Proc. Amer. Math. Soc. 17 413-416
[6]  
Gonzalez MC(2005)Numerical radius inequalities for Hilbert space operators Studia Math. 168 73-80
[7]  
Baklouti H(2015)Cartesian decomposition and numerical radius inequalities Linear Algebra Appl. 471 46-53
[8]  
Feki K(2019)Positivity of Banach J. Math. Anal. 13 726-743
[9]  
Sid OAM(2020) block matrices of operators Linear Algebra Appl. 591 299-321
[10]  
Baklouti H(2019)Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces Linear Algebra Appl. 578 159-183