On Relaxed Elastic Lines of the Second Type on an Oriented Surface in the Galilean Space G3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{G_{3}}$$\end{document}

被引:0
作者
Ayhan Sarioglugil
Hellmuth Stachel
Ayhan Tutar
机构
[1] Ondokuz Mayis University,Faculty of Science and Arts, Department of Mathematics
[2] Vienna University of Technology,Institute of Discrete, Mathematics and Geometry
[3] Kyrgyz-Trk Manas University,Faculty of Science, Mathematics Department
来源
Results in Mathematics | 2017年 / 71卷
关键词
Elastic curve; Galilean space; Geodesics; Euler–Lagrange equations; 53A04; 53B20; 05A15; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the relaxed elastic line of the second type on an oriented surface in the Galilean space G3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{3}$$\end{document} is defined. For the relaxed elastic lines of the second type which are lying on a given oriented surface the Euler–Lagrange equations are derived. In particular, we investigate whether they can be geodesic or curvature lines. In the last section we present some examples to confirm our claim.
引用
收藏
页码:955 / 982
页数:27
相关论文
共 23 条
[1]  
Bryant RL(1986)Reduction for constrained variational problems and Am. J. Math. 108 525-570
[2]  
Griffiths P(1994)Elastic curves on the sphere Adv. Comput. Math. 2 23-40
[3]  
Brunnett G(2003)Special curves on ruled surfaces in Galilean and pseudo-Galilean space Acta Math. Hung. 98 203-215
[4]  
Crouch PE(2003)Minding isometries of ruled surfaces in pseudo-Galilean space J. Geom. 77 35-47
[5]  
Divjak B(1991)Existence theorems for ruled surfaces in the Galilean space Rad Hazu Math. 456 183-196
[6]  
Divjak B(1984)Total squared curvature of closed curves J. Differ. Geom. 20 1-22
[7]  
Sipus M(1984)Knotted elastic curves in J. Lond. Math. Soc. 2 512-520
[8]  
Kamenarovic I(1987)Relaxed elastic line on an curved surfaces Q. Appl. Math. XLV 515-527
[9]  
Langer J(1988)Intrinsic equations for a relaxed elastic line on an oriented surface Geom. Dedicata XLV 515-527
[10]  
Singer D(1990)Drehzykliden des galileischen Raumes Math. Pannonica 2 95-104