Block sampling Kaczmarz–Motzkin methods for consistent linear systems

被引:0
作者
Yanjun Zhang
Hanyu Li
机构
[1] Chongqing University,College of Mathematics and Statistics
来源
Calcolo | 2021年 / 58卷
关键词
Block sampling Kaczmarz–Motzkin methods; Greedy strategy; Sampling Kaczmarz–Motzkin method; Consistent linear systems; 65F10; 65F20;
D O I
暂无
中图分类号
学科分类号
摘要
The sampling Kaczmarz–Motzkin (SKM) method is a generalization of the randomized Kaczmarz method and the Motzkin method. It first samples some rows of coefficient matrix randomly to build a set and then makes use of the maximum violation criterion within this set to determine a constraint. Finally, it makes progress by enforcing this single constraint. In this paper, based on the SKM method and the block strategies, we present two block sampling Kaczmarz–Motzkin methods for consistent linear systems. Specifically, we also first sample a subset of rows of coefficient matrix and then determine an index in this set using the maximum violation criterion. Unlike the SKM method, in the block methods, we devise different greedy strategies to build index sets. Then, the new methods make progress by enforcing the corresponding multiple constraints simultaneously. Numerical experiments show that, for the same accuracy, our methods outperform the SKM method and the famous deterministic method, i.e., the CGLS method, in terms of the number of iterations and computing time.
引用
收藏
相关论文
共 54 条
  • [1] Kaczmarz S(1937)Angenäherte auflösung von systemen linearer gleichungen Bull. Int. Acad. Polon. Sci. Lett. A 35 355-357
  • [2] Strohmer T(2009)A randomized Kaczmarz algorithm with exponential convergence J. Fourier Anal. Appl. 15 262-278
  • [3] Vershynin R(2010)Randomized Kaczmarz solver for noisy linear systems BIT Numer. Math. 50 395-403
  • [4] Needell D(2011)Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss lemma Numer. Algorithms 58 163-177
  • [5] Eldar Y(2013)Randomized extended Kaczmarz for solving least squares SIAM J. Matrix Anal. Appl. 34 773-793
  • [6] Needell D(2015)Convergence properties of the randomized extended Gauss–Seidel and Kaczmarz methods SIAM J. Matrix Anal. Appl. 36 1590-1604
  • [7] Zouzias A(2019)Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss–Seidel algorithms Numer. Linear Algebra Appl. 26 e2233-392
  • [8] Freris N(2020)Projected randomized Kaczmarz methods J. Comput. Appl. Math. 372 112672-404
  • [9] Ma A(2020)On the error estimate of the randomized double block Kaczmarz method Appl. Math. Comput. 370 124907-806
  • [10] Needell D(1954)The relaxation method for linear inequalities Canad. J. Math. 6 382-S87