Continuous maps induced by embeddings of C0(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}(K)$$\end{document} spaces into C0(S,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}(S, X)$$\end{document} spaces

被引:0
作者
Elói Medina Galego
Michael A. Rincon-Villamizar
机构
[1] University of São Paulo,Department of Mathematics, IME
关键词
Generalizations of Banach–Stone theorem; Versions of Holsztyński’s theorem; Into isomorphisms of ; spaces; Primary 46B03; 46E15; Secondary 46E40; 46B25;
D O I
10.1007/s00605-016-1014-x
中图分类号
学科分类号
摘要
Let K and S be locally compact Hausdorff spaces and X a Banach space. Suppose that T is a linear operator from C0(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}(K)$$\end{document} into C0(S,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{0}(S, X)$$\end{document} with ‖T‖‖T-1‖<λ(X),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert T\Vert \ \Vert T^{-1}\Vert < \lambda (X), \end{aligned}$$\end{document}where λ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (X)$$\end{document} is a parameter introduced by Jarosz in 1989. We prove that there exist a subset S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} of S and a continuous function from S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} onto K. This vector-valued version of the 1966 classical Holsztyński’s theorem is optimal in the case where X=lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=l_{p}$$\end{document}, 2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2 \le p< \infty $$\end{document}. Moreover, if T satisfies the following stronger condition ‖T‖‖T-1‖<3λ(X)λ(X)+2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert T\Vert \ \Vert T^{-1}\Vert < \frac{3\lambda (X)}{\lambda (X)+2}, \end{aligned}$$\end{document}then for each ordinal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} there exist a subset Sα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\alpha }$$\end{document} of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}th derivative of S and a continuous function from Sα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\alpha }$$\end{document} onto the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}th derivative of K. When K is compact, the set Sα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\alpha }$$\end{document} may be taken closed.
引用
收藏
页码:37 / 47
页数:10
相关论文
共 18 条
[1]  
Amir D(1965)On isomorphisms of continuous function spaces Israel J. Math. 3 205-210
[2]  
Cambern M(1967)On isomorphisms with small bound Proc. Am. Math. Soc. 18 1062-1066
[3]  
Cengiz B(1985)Continuous maps induced by isomorphisms of extremely regular function spaces J. Pure Appl. Sci. 18 377-384
[4]  
Cidral FC(2015)Optimal extensions of the Banach–Stone theorem J. Math. Anal. Appl. 430 193-204
[5]  
Galego EM(1936)Uniformly convex spaces Trans. Am. Math. Soc. 40 396-414
[6]  
Rincón-Villamizar MA(1975)A bound-two isomorphism between Proc. Am. Math. Soc. 50 215-217
[7]  
Clarkson JA(2015) Banach spaces Bull. Sci. Math. 139 880-891
[8]  
Cohen HB(1966)Weak forms of Banach–Stone theorem for Studia Math. 26 133-136
[9]  
Galego EM(1984) spaces via the Proc. Am. Math. Soc. 90 374-377
[10]  
Rincón-Villamizar MA(1989)th derivatives of Pac. J. Math. 138 295-315