A tutorial on variational Bayesian inference

被引:0
作者
Charles W. Fox
Stephen J. Roberts
机构
[1] University of Sheffield,Adaptive Behaviour Research Group
[2] University of Oxford,Pattern Analysis and Machine Learning Research Group, Department of Engineering Science
来源
Artificial Intelligence Review | 2012年 / 38卷
关键词
Variational Bayes; Mean-field; Tutorial;
D O I
暂无
中图分类号
学科分类号
摘要
This tutorial describes the mean-field variational Bayesian approximation to inference in graphical models, using modern machine learning terminology rather than statistical physics concepts. It begins by seeking to find an approximate mean-field distribution close to the target joint in the KL-divergence sense. It then derives local node updates and reviews the recent Variational Message Passing framework.
引用
收藏
页码:85 / 95
页数:10
相关论文
共 2 条
[1]  
Winn J(2005)Variational message passing J Mach Learn Res 6 661-694
[2]  
Bishop C(undefined)undefined undefined undefined undefined-undefined