On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations

被引:0
|
作者
Zinelaabidine Latreuch
Tania Biswas
Abhijit Banerjee
机构
[1] University of Mostaganem,Laboratory of Pure and Applied Mathematics, Department of Mathematics
[2] University of Kalyani,Department of Mathematics
来源
Computational Methods and Function Theory | 2022年 / 22卷
关键词
Meromorphic functions; Nevanlinna’s theory; Non-linear delay-differential equations; Form of solutions; Primary 39A45; Secondary 30D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider transcendental meromorphic solutions f of finite order ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and few poles in the sense that Sλ(r,f):=O(rλ+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f):=O(r^{\lambda +\varepsilon })$$\end{document}, where λ<ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <\rho $$\end{document} and ε∈(0,ρ-λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,\rho -\lambda )$$\end{document}, of the delay-differential equation fn+L(z,f)=p1(z)eα1(z)+p2(z)eα2(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^n+L(z,f)=p_1(z)e^{\alpha _{1}(z)}+p_2(z)e^{\alpha _{2}(z)}, \end{aligned}$$\end{document}where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} is an integer, L(z, f) is a linear delay-differential polynomial with coefficients of growth Sλ(r,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f)$$\end{document}. In addition, p1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1(z)$$\end{document}, p2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(z)$$\end{document} are non-zero small functions of f in the sense Sλ(r,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f)$$\end{document} and α1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}(z)$$\end{document}, α2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{2}(z)$$\end{document} are non-constant polynomials. In fact, we give the exact forms of all possible meromorphic solutions of the above equation and we improve some recent results.
引用
收藏
页码:401 / 432
页数:31
相关论文
共 50 条
  • [21] On the Growth of Meromorphic Solutions of Certain Nonlinear Difference Equations
    Li, Xiao-Min
    Hao, Chen-Shuang
    Yi, Hong-Xun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [22] On the Growth of Meromorphic Solutions of Certain Nonlinear Difference Equations
    Xiao-Min Li
    Chen-Shuang Hao
    Hong-Xun Yi
    Mediterranean Journal of Mathematics, 2021, 18
  • [23] Meromorphic solutions of certain difference equations of first order
    Yong Liu
    Aequationes mathematicae, 2014, 87 : 309 - 323
  • [24] ON THE EXISTENCE OF MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENCE EQUATIONS
    Li, Xiao-Min
    Hao, Chen-Shuang
    Yi, Hong-Xun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1723 - 1748
  • [25] Meromorphic solutions of certain difference equations of first order
    Liu, Yong
    AEQUATIONES MATHEMATICAE, 2014, 87 (03) : 309 - 323
  • [26] Meromorphic solutions of nonlinear ordinary differential equations
    Siddheshwar, P. G.
    Tanuja, A.
    Bhoosnurmath, Subhas S.
    Barki, Mahesh
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (02) : 77 - 88
  • [27] Admissible meromorphic solutions of algebraic differential equations
    Zhang, Jian-jun
    Liao, Liang-wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 225 - 232
  • [28] On certain non-linear differential polynomial sharing a non-zero polynomial
    Banerjee A.
    Majumder S.
    Boletín de la Sociedad Matemática Mexicana, 2018, 24 (1) : 155 - 180
  • [29] LINEAR INDEPENDENCE OF ITERATES AND MEROMORPHIC SOLUTIONS OF FUNCTIONAL-EQUATIONS
    CHRISTENSEN, JPR
    FISCHER, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) : 1137 - 1143
  • [30] On entire solutions of certain partial differential equations
    Lu, Feng
    Bi, Wenqi
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (06)