On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations

被引:0
|
作者
Zinelaabidine Latreuch
Tania Biswas
Abhijit Banerjee
机构
[1] University of Mostaganem,Laboratory of Pure and Applied Mathematics, Department of Mathematics
[2] University of Kalyani,Department of Mathematics
来源
Computational Methods and Function Theory | 2022年 / 22卷
关键词
Meromorphic functions; Nevanlinna’s theory; Non-linear delay-differential equations; Form of solutions; Primary 39A45; Secondary 30D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider transcendental meromorphic solutions f of finite order ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} and few poles in the sense that Sλ(r,f):=O(rλ+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f):=O(r^{\lambda +\varepsilon })$$\end{document}, where λ<ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <\rho $$\end{document} and ε∈(0,ρ-λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,\rho -\lambda )$$\end{document}, of the delay-differential equation fn+L(z,f)=p1(z)eα1(z)+p2(z)eα2(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^n+L(z,f)=p_1(z)e^{\alpha _{1}(z)}+p_2(z)e^{\alpha _{2}(z)}, \end{aligned}$$\end{document}where n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} is an integer, L(z, f) is a linear delay-differential polynomial with coefficients of growth Sλ(r,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f)$$\end{document}. In addition, p1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1(z)$$\end{document}, p2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2(z)$$\end{document} are non-zero small functions of f in the sense Sλ(r,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lambda }(r,f)$$\end{document} and α1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}(z)$$\end{document}, α2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{2}(z)$$\end{document} are non-constant polynomials. In fact, we give the exact forms of all possible meromorphic solutions of the above equation and we improve some recent results.
引用
收藏
页码:401 / 432
页数:31
相关论文
共 50 条
  • [1] On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations
    Latreuch, Zinelaabidine
    Biswas, Tania
    Banerjee, Abhijit
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (03) : 401 - 432
  • [2] On solutions of certain nonlinear delay-differential equations
    Xiang, Xuxu
    Long, Jianren
    Liu, Jianming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [3] On meromorphic solutions of non-linear differential equations of Tumura-Clunie type
    Heittokangas, J.
    Latreuch, Z.
    Wang, J.
    Zemirni, M. A.
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (04) : 748 - 773
  • [4] The exact meromorphic solutions of some nonlinear differential equations
    Liu, Huifang
    Mao, Zhiqiang
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 103 - 114
  • [5] The exact meromorphic solutions of some nonlinear differential equations
    Huifang Liu
    Zhiqiang Mao
    Acta Mathematica Scientia, 2024, 44 : 103 - 114
  • [6] Meromorphic solutions of higher order delay differential equations
    Cao, Tingbin
    Chen, Yu
    Korhonen, Risto
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [7] Meromorphic solution of a class of non-linear differential equations with sharing one value
    P. G. Siddheshwar
    Tanuja Adaviswamy
    Subhas S. Bhoosnurmath
    Mahesh Barki
    The Journal of Analysis, 2020, 28 : 415 - 430
  • [8] Meromorphic solution of a class of non-linear differential equations with sharing one value
    Siddheshwar, P. G.
    Adaviswamy, Tanuja
    Bhoosnurmath, Subhas S.
    Barki, Mahesh
    JOURNAL OF ANALYSIS, 2020, 28 (02) : 415 - 430
  • [9] SOME RESULTS ON MEROMORPHIC SOLUTIONS OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS
    Li, Nan
    Yang, Lianzhong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) : 1095 - 1113
  • [10] On the uniqueness of meromorphic functions of certain types of non-linear differential polynomials share a small function
    Jayarama, H. R.
    Naveenkumar, S. H.
    Chaithra, C. N.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 (04): : 21 - 37