An improved low-cost yoking proof protocol based on Kazahaya’s flaws

被引:0
作者
Nasour Bagheri
Masoumeh Safkhani
Mojtaba Eslamnezhad Namin
Samad Rostampour
机构
[1] Islamic Azad University,Department of Computer Engineering, Science and Research Branch
[2] Shahid Rajaee Teacher Training University,Electrical Engineering Department
[3] Shahid Rajaee Teacher Training University,Computer Engineering Department
[4] Islamic Azad University,Department of Computer Engineering, Ahvaz Branch
来源
The Journal of Supercomputing | 2018年 / 74卷
关键词
RFID; Authentication; Yoking proof; Secret disclosure attack;
D O I
暂无
中图分类号
学科分类号
摘要
Peris-Lopez et al. (J Netw Comput Appl 34:833–845, 2011) recently provided some guidelines that should be followed to design a secure yoking proof protocol. In addition, conforming to those guidelines and EPC C1-G2, they presented a yoking proof for medical systems based on low-cost RFID tags, named Kazahaya. In this paper, we compromise its security and show how a passive adversary can retrieve secret parameters of a patient’s tag in cost of O(216)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{16})$$\end{document} off-line PRNG evaluations. Nevertheless, to show other weaknesses of the protocol and rule out any possible improvement by increasing the length of the used PRNG, we present a forgery attack that proves that a generated proof at time tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_n$$\end{document} can be used to forge a valid proof for any desired time tj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_j$$\end{document}. The success probability of this attack is ‘1’ and the complexity is negligible. In addition, we present a new lightweight protocol based on 128-bit PRNG function to solve the problems of Kazahaya protocol. In terms of security, we evaluate the new protocol based on formal and informal methods and prove that the improved protocol is not vulnerable to RFID attacks.
引用
收藏
页码:1934 / 1948
页数:14
相关论文
共 49 条
[1]  
Alamr AA(2016)A secure ECC-based RFID mutual authentication protocol for internet of things J Supercomput 2 1-14
[2]  
Kausar F(2017)Implementation of 2 IEEE Trans Ind Electron 65 626-635
[3]  
Kim J(2017) modulo adder based RFID mutual authentication protocol J Supercomput 1 1-6
[4]  
Seo C(2016)On the security of a new ultra-lightweight authentication protocol in IoT environment for RFID tags Peer Peer Netw Appl 10 1-9
[5]  
Vijaykumar V(2015)An ultra-lightweight RFID authentication scheme for mobile commerce Comput Netw 76 146-164
[6]  
Elango S(2015)Security, privacy and trust in internet of things: the road ahead J Med Syst 39 1-8
[7]  
Ramakrishnan S(2011)A secure RFID tag authentication protocol with privacy preserving in telecare medicine information system J Netw Comput Appl 34 833-845
[8]  
Wang K-H(2009)Flaws on RFID grouping-proofs. Guidelines for future sound protocols J Med Syst 33 467-474
[9]  
Chen C-M(2011)A RFID grouping proof protocol for medication safety of inpatient J Med Syst 35 369-375
[10]  
Fang W(2006)Two RFID-based solutions to enhance inpatient medication safety Trans Eng Comput Technol 18 52-57