Generalizability of Abusive Language Detection Models on Homogeneous German Datasets

被引:4
作者
Seemann, Nina [1 ]
Lee, Yeong Su [1 ]
Höllig, Julian [1 ]
Geierhos, Michaela [1 ]
机构
[1] Research Institute CODE, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg,85577, Germany
关键词
Compendex;
D O I
10.1007/s13222-023-00438-1
中图分类号
学科分类号
摘要
Deep learning
引用
收藏
页码:15 / 25
页数:10
相关论文
共 14 条
  • [1] Beddiar DR(2021)Data expansion using back translation and paraphrasing for hate speech detection Online Soc Netw Media 24 100-153
  • [2] Jahan MS(2020)The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation Bmc Genomics 58 102524-500
  • [3] Oussalah M(2021)How well do hate speech, toxicity, abusive and offensive language classification models generalize across datasets? Inf Process Manag 12 491-190
  • [4] Chicco D(2018)Large scale crowdsourcing and characterization of Twitter abusive behavior ICWSM 4 155-undefined
  • [5] Jurman G(2018)The SFU opinion and comments corpus: a corpus for the analysis of Online news comments Corpus Pragmat undefined undefined-undefined
  • [6] Fortuna P(undefined)undefined undefined undefined undefined-undefined
  • [7] Soler-Company J(undefined)undefined undefined undefined undefined-undefined
  • [8] Wanner L(undefined)undefined undefined undefined undefined-undefined
  • [9] Founta A(undefined)undefined undefined undefined undefined-undefined
  • [10] Djouvas C(undefined)undefined undefined undefined undefined-undefined