On monotone nonexpansive mappings in CATp(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{CAT}_{p}(0)$\end{document} spaces

被引:0
作者
Sami Shukri
机构
[1] Al-Hussein Bin Talal University,Department of Mathematics
关键词
Fixed points; Best proximity points; spaces; Partial order; Contraction mappings; Nonexpansive mappings; Monotone mappings; 47H10; 54H25; 47H09; 46C20;
D O I
10.1186/s13663-020-00675-z
中图分类号
学科分类号
摘要
In this paper, based on some geometrical properties of CATp(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{CAT}_{p}(0)$\end{document} spaces, for p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \geq 2$\end{document}, we obtain two fixed point results for monotone multivalued nonexpansive mappings and proximally monotone nonexpansive mappings. Which under some assumptions, reduce to coincide and generalize a fixed point result for monotone nonexpansive mappings. This work is a continuity of the previous work of Ran and Reurings, Nieto and Rodríguez-López done for monotone contraction mappings.
引用
收藏
相关论文
共 35 条
[1]  
Aggarwal S.(2019)Convergence and stability of Fibonacci–Mann iteration for a monotone non-Lipschitzian mapping Demonstr. Math. 52 388-396
[2]  
Uddin I.(2019)A fixed-point theorem for monotone nearly asymptotically nonexpansive mappings J. Fixed Point Theory Appl. 21 2451-2456
[3]  
Aggarwal S.(2018)A fixed point theorem for monotone asymptotically nonexpansive mappings Proc. Am. Math. Soc. 146 133-181
[4]  
Uddin I.(2015)Fixed points of monotone mappings and application to integral delay equations Fixed Point Theory Appl. 2015 1035-1043
[5]  
Nieto J.J.(1922)Sur les opérations dans les ensembles abstraits et leurs applications Fundam. Math. 3 1987-1995
[6]  
Alfuraidan M.R.(2013)Best proximity point theorems on partially ordered sets Optim. Lett. 7 723-726
[7]  
Khamsi M.A.(2016)Browder and Göhde fixed point theorem for monotone nonexpansive mappings Fixed Point Theory Appl. 2016 349-357
[8]  
Bachar M.(2008)A new approach to relatively nonexpansive mappings Proc. Am. Math. Soc. 136 417-426
[9]  
Khamsi M.A.(1989)On metric spaces with uniform normal structure Proc. Am. Math. Soc. 106 851-862
[10]  
Banach S.(1997)Disjunctive signed logic programs Fundam. Inform. 32 286-292