Plasma conductivity as a probe for ambient air admixture in an atmospheric pressure plasma jet

被引:0
作者
F. J. J. Peeters
R. F. Rumphorst
M. C. M. van de Sanden
机构
[1] DIFFER - Dutch Institute for Fundamental Energy Research,Department of Applied Physics
[2] Eindhoven University of Technology,undefined
来源
Plasma Chemistry and Plasma Processing | 2018年 / 38卷
关键词
Plasma jet; Double probe; Chemical kinetic model;
D O I
暂无
中图分类号
学科分类号
摘要
By utilizing a fully floating double electrical probe system, the conductivity of a linear atmospheric pressure plasma jet, utilizing nitrogen as process gas, was measured. The floating probe makes it possible to measure currents in the nanoamp range, in an environment where capacitive coupling of the probes to the powered electrodes is on the order of several kilovolts. Using a chemical kinetic model, the production of reactive nitrogen oxide and hydrogen-containing species through admixture of ambient humid air is determined and compared to the measured gas conductivity. The chemical kinetic model predicts an enhanced diffusion coefficient for admixture of O2 and H2O from ambient air of 2.7 cm2 s−1, compared to a literature value of 0.21 cm2 s−1, which is attributed to rapid mixing between the plasma jets and the surrounding air. The dominant charge carriers contributing to the conductivity, aside from electrons, are NO+, NO2− and NO3−. Upon admixture of O2 and H2O, the dominant neutral products formed in the N2 plasma jet are O, NO and N2O, while O2(1Δg) singlet oxygen is the only dominant excited species.
引用
收藏
页码:63 / 74
页数:11
相关论文
共 50 条
  • [21] Design, Construction and Characterization of AC Atmospheric Pressure Air Non-thermal Plasma Jet
    K. M. Ahmed
    T. M. Allam
    H. A. El-sayed
    H. M. Soliman
    S. A. Ward
    E. M. Saied
    [J]. Journal of Fusion Energy, 2014, 33 : 627 - 633
  • [22] Design, Construction and Characterization of AC Atmospheric Pressure Air Non-thermal Plasma Jet
    Ahmed, K. M.
    Allam, T. M.
    El-sayed, H. A.
    Soliman, H. M.
    Ward, S. A.
    Saied, E. M.
    [J]. JOURNAL OF FUSION ENERGY, 2014, 33 (06) : 627 - 633
  • [23] The jet-stream channels of gas and plasma in atmospheric-pressure plasma jets
    Guangsup Cho
    Yunjung Kim
    Han Sup Uhm
    [J]. Journal of the Korean Physical Society, 2016, 69 : 525 - 535
  • [24] The jet-stream channels of gas and plasma in atmospheric-pressure plasma jets
    Cho, Guangsup
    Kim, Yunjung
    Uhm, Han Sup
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (04) : 525 - 535
  • [25] Ignition and Propagation of an Atmospheric-Pressure Helium Plasma Jet
    Walsh, James L.
    Kong, Michael G.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2306 - 2307
  • [26] Production of nitric/nitrous oxide by an atmospheric pressure plasma jet
    Douat, C.
    Huebner, S.
    Engeln, R.
    Benedikt, J.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (02)
  • [27] Deposition of diamond films in arc plasma jet at atmospheric pressure
    Gregor, I
    Jakubova, I
    Senk, J
    Hrabovsky, M
    Kolman, B
    Konrád, M
    Kopecky, V
    Vorlícek, V
    Pokorny, J
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 : 878 - 885
  • [28] Basic characteristics of an atmospheric pressure rf generated plasma jet
    Wang, SG
    Li, HJ
    Ye, TC
    Zhao, LL
    [J]. CHINESE PHYSICS, 2004, 13 (02): : 190 - 195
  • [29] Production of titanium dioxide powders by atmospheric pressure plasma jet
    Liu, Zhongwei
    Chen, Qiang
    Wang, Zhengduo
    Yang, Lizhen
    Wang, Chuanyue
    [J]. PROCEEDING OF THE FOURTH INTERNATIONAL CONFERENCE ON SURFACE AND INTERFACE SCIENCE AND ENGINEERING, 2011, 18
  • [30] Inactivation of Candida albicans by Cold Atmospheric Pressure Plasma Jet
    Kostov, Konstantin Georgiev
    Borges, Aline Chiodi
    Koga-Ito, Cristiane Yumi
    Nishime, Thalita Mayumi Castaldelli
    Prysiazhnyi, Vadym
    Honda, Roberto Yzumi
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (03) : 770 - 775