Stability analysis of classic finite horizon model predictive control

被引:0
作者
Wen-Hua Chen
机构
[1] Loughborough University,Department of Aeronautical and Automotive Engineering
来源
International Journal of Control, Automation and Systems | 2010年 / 8卷
关键词
Constrained control; finite horizon; Lyapunov theory; nonlinear systems; predictive control; stability;
D O I
暂无
中图分类号
学科分类号
摘要
This paper revisits the stability issue of earlier model predictive control (MPC) algorithms where the performance index has a finite receding horizon and there is no terminal penalty in the performance index or other constraints added in online optimisation for the purpose of stability. Stability conditions are presented for MPC of constrained linear and nonlinear systems, and there is no restriction on the length of the horizon. These conditions can be used to test whether or not desired stability properties can be achieved under chosen state and control weightings.
引用
收藏
页码:187 / 197
页数:10
相关论文
共 47 条
[1]  
Mayne D. Q.(2000)Constrained model predictive control: stability and optimality Automatica 36 789-814
[2]  
Rawlings J. B.(1997)Stabilizing predictive control of nonlinear ARX models Automatica 33 1691-1697
[3]  
Rao C. V.(1997)Discrete-time stability with perturbations: application to model predictive control Automatica 33 463-470
[4]  
Scokaert P. O. M.(1999)Suboptimal model predictive control (feasibility implies stability) IEEE Trans. on Automatic Control 44 648-654
[5]  
De Nicolao G.(1992)Stable redesign of predictive control Automatica 28 1229-1233
[6]  
Magni L.(1998)Receding horizon control via Bolza-type optimisation Systems & Control Letters 35 195-200
[7]  
Scattolini R.(1997)Stability margins of nonlinear receding-horizon control via inverse optimality Systems and Control Letters 32 241-245
[8]  
Scokaert P. O. M.(1993)Robust receding horizon control of constrained nonlinear systems IEEE Trans. on Automatic Control 38 1623-1633
[9]  
Rawings J. B.(1998)A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability Automatica 34 1205-1217
[10]  
Meadows E. S.(2000)Model predictive control of nonlinear systems: computational burden and stability IEE Proceedings Part D: Control Theory and Applications 147 387-394