Product-type operators on a class of Banach spaces of analytic functions into μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bloch spaces on the unit ball in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}

被引:0
作者
K. Poongothai
G. P. Youvaraj
机构
[1] University of Madras,Ramanujan Institute for Advanced Study in Mathematics
关键词
Composition operator; Multiplication operator; Radial derivative operator; Bloch-type spaces; Boundedness; Compactness; 47B33; 47B38; 46E15; 32A18;
D O I
10.1007/s43036-023-00264-y
中图分类号
学科分类号
摘要
Let B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} be an open unit ball in Cn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{n}.$$\end{document} Let H(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\mathbb {B}})$$\end{document} be the collection of all analytic functions on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} and S(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S({\mathbb {B}})$$\end{document} be the collection of all analytic self-maps on B.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}.$$\end{document} In this paper, we study the boundedness and compactness of the operator Tψ0,ψ1,ψ2,φf(z)=ψ0(z)f(φ(z))+ψ1(z)Rf(φ(z))+ψ2(z)R(f∘φ)(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_{\psi _0,\psi _1,\psi _2,\varphi }f(z)=\psi _{0}(z)f(\varphi (z))+ \psi _{1}(z){\mathcal {R}}f(\varphi (z))+\psi _2(z) {\mathcal {R}}(f\circ \varphi )(z), \end{aligned}$$\end{document}where ψ0,ψ1,ψ2∈H(B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _0,\psi _1,\psi _2\in H({\mathbb {B}}),$$\end{document}φ∈S(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in S({\mathbb {B}})$$\end{document} and Rf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}f$$\end{document} denotes the radial derivative of f∈H(B),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in H({\mathbb {B}}),$$\end{document} from a class of Banach spaces of analytic functions to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bloch spaces on B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}$$\end{document} and obtain estimates for its norm.
引用
收藏
相关论文
共 49 条
[1]  
Fu X(2008)Weighted composition operators on some weighted spaces in the unit ball Abstr. Appl. Anal. 12 1625-1639
[2]  
Zhu X(2008)Weighted composition operators between Taiwan. J. Math. 37 425-438
[3]  
Li S(2017) and Acta Math. Sci. 423 76-93
[4]  
Stević S(2015)-Bloch spaces in the unit ball J. Math. Anal. Appl. 11 261-288
[5]  
Li S(2017)The compact composition operator on the Complex Anal. Oper. Theory 62 670-694
[6]  
Zhang X(2017)-Bergman space in the unit ball Complex Var. Elliptic Equ. 7 593-606
[7]  
Xu S(2013)Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball Complex Anal. Oper. Theory 347 2679-2687
[8]  
Liu Y(1995)On an extension of Stević–Sharma operator from the general spaces to weighted-type spaces on the unit ball Trans. Am. Math. Soc. 218 9241-9247
[9]  
Yu Y(2022)On an extension of Stević–Sharma operator from the mixed-norm space to weighted-type spaces Complex Var. Elliptic Equ. 71 6323-6342
[10]  
Liu Y(2007)On an operator J. Inequal. Appl. 217 5930-5935