Chain conditions on commutative monoids

被引:0
作者
Bijan Davvaz
Zahra Nazemian
机构
[1] Yazd University,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Semigroup Forum | 2020年 / 100卷
关键词
Semigroup; Monoid; Iso-DC; Iso-AC;
D O I
暂无
中图分类号
学科分类号
摘要
We consider commutative monoids with some kinds of isomorphism condition on their ideals. We say that a monoid S has isomorphism condition on its ascending chains of ideals, if for every ascending chain I1⊆I2⊆⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_1 \subseteq I_2 \subseteq \cdots $$\end{document} of ideals of S, there exists n such that Ii≅In\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_i \cong I_n $$\end{document}, as S-acts, for every i≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \ge n$$\end{document}. Then S for short is called Iso-AC monoid. Dually, the concept of Iso-DC is defined for monoids by isomorphism condition on descending chains of ideals. We prove that if a monoid S is Iso-DC, then it has only finitely many non-isomorphic isosimple ideals and the union of all isosimple ideals is an essential ideal of S. If a monoid S is Iso-AC or a reduced Iso-DC, then it cannot contain a zero-disjoint union of infinitely many non-zero ideals. If S=S1×⋯×Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S= S_1 \times \cdots \times S_n$$\end{document} is a finite product of monids such that each Si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} is isosimple, then S may not be Iso-DC but it is a noetherian S-act and so an Iso-AC monoid.
引用
收藏
页码:732 / 742
页数:10
相关论文
共 5 条
  • [1] Facchini A(2016)Modules with chain conditions up to isomorphism J. Algebra 453 578-601
  • [2] Nazemian Z(2017)Artinian dimension and isoradical of modules J. Algebra 484 66-87
  • [3] Facchini A(1913)Finiteness of the odd perfect and primitive abundant numbers with Am. J. Math. 35 413-422
  • [4] Nazemian Z(undefined) distinct prime factors undefined undefined undefined-undefined
  • [5] Dickson LE(undefined)undefined undefined undefined undefined-undefined