On σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-subnormality criteria in finite σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-soluble groups

被引:0
作者
A. Ballester-Bolinches
S. F. Kamornikov
M. C. Pedraza-Aguilera
V. Pérez-Calabuig
机构
[1] Guangdong University of Education,Department of Mathematics
[2] Universitat de València,Departament de Matemàtiques
[3] F. Scorina Gomel State University,Department of Mathematics
[4] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷 / 2期
关键词
Finite group; -Solubility; -Nilpotency; -Subnormal subgroup; Factorised group; 20D10; 20D20;
D O I
10.1007/s13398-020-00824-4
中图分类号
学科分类号
摘要
Let σ={σi:i∈I}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = \{ {\sigma }_{i} : i \in I \}$$\end{document} be a partition of the set P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}$$\end{document} of all prime numbers. A subgroup X of a finite group G is called σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-subnormal in G if there is a chain of subgroups X=X0⊆X1⊆⋯⊆Xn=G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} X=X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n}=G \end{aligned}$$\end{document}where for every j=1,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1, \dots , n$$\end{document} the subgroup Xj-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{j-1}$$\end{document} is normal in Xj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{j}$$\end{document} or Xj/CoreXj(Xj-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{j}/Core_{X_{j}}(X_{j-1})$$\end{document} is a σi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{i}$$\end{document}-group for some i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in I$$\end{document}. In the special case that σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the partition of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}$$\end{document} into sets containing exactly one prime each, the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-subnormality reduces to the familiar case of subnormality. In this paper some σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-subnormality criteria for subgroups of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-soluble groups, or groups in which every chief factor is a σi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{i}$$\end{document}-group, for some σi∈σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{i} \in \sigma $$\end{document}, are showed.
引用
收藏
相关论文
共 13 条
[1]  
Casolo C(1991)Subnormality in factorizable finite soluble groups Arch. Math. 57 12-13
[2]  
Fumagalli Francesco(2007)On subnormality criteria for subgroups in finite groups J. Lond. Math. Soc. 76 237-252
[3]  
Kamornikov SF(2018)On Probl. Phys. Math. Tech. 1 61-63
[4]  
Shemetkova OL(1977)-subnormal subgroups of a finite factorised group Bol. Soc. Bras. Mat. 8 127-130
[5]  
Maier R(1984)Um problema da teoria dos subgrupos subnormais Arch. Math. 42 97-101
[6]  
Maier R(2016)A note on subnormality in factorizable finite groups J. Algebra Appl. 15 13-16
[7]  
Sidki R(2015)A generalization of a Hall theorem J. Algebra 436 1-96
[8]  
Skiba AN(2014)On Probl. Phys. Math. Tech. 4 89-83
[9]  
Skiba AN(2015)-subnormal and Probl. Phys. Math. Tech. 3 70-89
[10]  
Skiba AN(2016)-permutable subgroups of finite groups Note Mat. 36 65-311