Pointwise regularity for a parabolic equation with log-term singularity

被引:0
|
作者
Angelo R. F. de Holanda
Olivaine S. de Queiroz
Cesar K. S. dos Santos
机构
[1] Universidade Federal de Campina Grande,Departamento de Matemática, IMECC
[2] Unidade Acadêmica de Matemática,undefined
[3] Universidade Estadual de Campinas,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2017年 / 196卷
关键词
Free boundary; Regularity theory; Existence; Logarithmic singularity; 35K55; 35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We obtained existence and pointwise regularity results for the following parabolic free boundary problem: ut-Δu=χ{u>0}loguinΩ×(0,T],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t-\Delta u = \chi _{\{u>0\}} \log u \ \ \hbox {in} \ \ \Omega \times (0,T], \end{aligned}$$\end{document}with initial and boundary conditions in some appropriate spaces. The equation is singular along the set ∂{u>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \{u>0\}$$\end{document}, and the logarithmic nonlinearity does not have scaling properties. Thus, the machinery from regularity theory for free boundary problems, which strongly relies on the homogeneity of the problem, can not be applied directly. We prove that, near the free boundary, an approximate solution grows at most like r2logr.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r^2\log r.$$\end{document} This is the so-called supercharacteristic growth, and its study has intriguing open questions. Our estimates are crucial to understand further analytic and geometric properties of the free boundary.
引用
收藏
页码:983 / 1000
页数:17
相关论文
共 20 条