Composition Operators on Sobolev Spaces and Q-Homeomorphisms

被引:0
作者
Alexander Menovschikov
Alexander Ukhlov
机构
[1] University of Hradec Králové,Department of Mathematics
[2] Ben-Gurion University of the Negev,Department of Mathematics
来源
Computational Methods and Function Theory | 2024年 / 24卷
关键词
Sobolev spaces; Quasiconformal mappings; 46E35; 30C65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give connections between mappings which generate bounded composition operators on Sobolev spaces and Q-mappings. Based on this, we obtain measure distortion properties of Q-homeomorphisms.
引用
收藏
页码:149 / 162
页数:13
相关论文
共 50 条
[41]   A quasiconformal composition problem for the Q-spaces [J].
Koskela, Pekka ;
Xiao, Jie ;
Zhang, Yi Ru-Ya ;
Zhou, Yuan .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (04) :1159-1187
[42]   On the functional properties of weak (p, q)-quasiconformal homeomorphisms [J].
Gol’dshtein V. ;
Ukhlov A. .
Journal of Mathematical Sciences, 2020, 246 (1) :18-29
[43]   Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators [J].
Saks, R. S. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (02) :249-274
[44]   Equivalence of Sobolev Spaces [J].
Salomonsen G. .
Results in Mathematics, 2001, 39 (1-2) :115-130
[45]   SOBOLEV SPACES DIVERSIFICATION [J].
Bongioanni, Bruno .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (02) :23-34
[46]   Compact Difference of Composition Operators with Quasiconformal Symbols on Bergman Spaces [J].
Fan, Ruiya .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2025,
[47]   A set of Sobolev spaces and boundary-value problems for the curl and gradient-of-divergence operators [J].
Saks, R. S. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2023, 27 (01) :23-49
[48]   Continuity in quasi-homogeneous Sobolev spaces for pseudo-differential operators with Besov symbols [J].
Garello, Gianluca ;
Morando, Alessandro .
MODERN TRENDS IN PSEUDO-DIFFERENTIAL OPERATORS, 2007, 172 :161-+
[49]   The structure of Sobolev extension operators [J].
Fefferman, Charles ;
Israel, Arie ;
Luli, Garving K. .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (02) :419-429
[50]   Neumann eigenvalues of elliptic operators in Sobolev extension domains [J].
Gol'dshtein, Vladimir ;
Pchelintsev, Valerii ;
Ukhlov, Alexander .
ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (03)