共 37 条
- [1] Abel R.J.R., Four mutually orthogonal latin squares of order 28 and 52, J. Combin. Theory (A), 58, pp. 306-309, (1991)
- [2] Abel R.J.R., On the Existence of Balanced Incomplete Block Designs and Transversal Designs, (1995)
- [3] Abel R.J.R., Colbourn C.J., Dinitz J.H., Incomplete MOLS: CRC Handbook of Combinatorial Designs, pp. 142-172, (1996)
- [4] Abel R.J.R., Todorov D.T., Four MOLS of order 20, 30, 38 and 44, J. Combin. Theory (A), 64, pp. 144-148, (1993)
- [5] Beth T., Jungnickel D., Lenz H., Design Theory, (1986)
- [6] Bose R.C., Shrikhande S.S., Parker E.T., Further results on the construction of mutually orthogonal latin squares and the falsity of Euler's conjecture, Canad. J. Math., 12, pp. 189-203, (1960)
- [7] Brouwer A.E., Four MOLS of order 10 with a hole of order 2, J. Statist. Planning and Inference, 10, pp. 203-205, (1984)
- [8] Brouwer A.E., The number of mutually orthogonal latin squares - A table up to order 10000, Math. Cent. Report ZW 123/79
- [9] Brouwer A.E., Van Rees G.H.J., More mutually orthogonal latin squares, Discrete Math., 39, pp. 263-281, (1982)
- [10] Colbourn C.J., Four MOLS of order 26, J. Comb. Math. Comb. Comput., 17, pp. 147-148, (1995)