Plane Curves Which are Quantum Homogeneous Spaces

被引:0
作者
Ken Brown
Angela Ankomaah Tabiri
机构
[1] University of Glasgow,School of Mathematics and Statistics
[2] African Institute for Mathematical Sciences(AIMS)-Ghana,undefined
来源
Algebras and Representation Theory | 2022年 / 25卷
关键词
Hopf algebras; Quantum homogeneous space; Plane curves; Primary: 16T20; Secondary: 16Rxx; 16P40; 16P90; 81R50;
D O I
暂无
中图分类号
学科分类号
摘要
Let C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} be a decomposable plane curve over an algebraically closed field k of characteristic 0. That is, C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} is defined in k2 by an equation of the form g(x) = f(y), where g and f are polynomials of degree at least two. We use this data to construct three affine pointed Hopf algebras, A(x, a, g), A(y, b, f) and A(g, f), in the first two of which g [resp. f ] are skew primitive central elements, with the third being a factor of the tensor product of the first two. We conjecture that A(g, f) contains the coordinate ring O(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\mathcal {C})$\end{document} of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} as a quantum homogeneous space, and prove this when each of g and f has degree at most five or is a power of the variable. We obtain many properties of these Hopf algebras, and show that, for small degrees, they are related to previously known algebras. For example, when g has degree three A(x, a, g) is a PBW deformation of the localisation at powers of a generator of the downup algebra A(− 1,− 1,0). The final section of the paper lists some questions for future work.
引用
收藏
页码:889 / 922
页数:33
相关论文
共 36 条
  • [1] Azumaya G(1946)New foundations in the theory of simple rings Proc. Japan Acad. 22 325-332
  • [2] Benkart G(1998)Down-up algebras J. Algebra 209 305-344
  • [3] Roby T(2006)Higher symplectic reflection algebras and non-homogeneous N-Koszul property J. Algebra 304 577-601
  • [4] Berger R(1978)The diamond lemma for ring theory Adv. Math. 29 178-218
  • [5] Ginzburg V(2016)Quantum homogeneous spaces of connected Hopf algebras J. Algebra 454 400-432
  • [6] Bergman GM(2017)The Cohen Macaulay property for noncommutative rings Algebras and Rep. Theory 20 1433-1465
  • [7] Brown KA(2008)Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras J. Algebra 320 1814-1850
  • [8] Gilmartin P(1980)Maximal orders applied to enveloping algebras Springer Lecture Notes in Math. 825 19-27
  • [9] Brown KA(2010)Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two J. Algebra 324 3131-3168
  • [10] Macleod M(2010)Noetherian Down-up Algebras Proc. Amer. Math. Soc. 127 3161-3167