Characterizing Programming Systems Allowing Program Self-Reference

被引:0
作者
John Case
Samuel E. Moelius
机构
[1] University of Delaware,Department of Computer & Information Sciences
来源
Theory of Computing Systems | 2009年 / 45卷
关键词
Computability theory; Computable operators; Control structures; Numberings; Programming systems; Recursive function theory; Recursive operators; Recursion theorem; Self-reference;
D O I
暂无
中图分类号
学科分类号
摘要
The interest is in characterizing insightfully the power of program self-reference in effective programming systems ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{epses}$\end{document} ), the computability-theoretic analogs of programming languages (for the partial computable functions). In an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{eps}$\end{document} in which the constructive form of Kleene’s Recursion Theorem (KRT) holds, it is possible to construct, algorithmically, from an arbitrary algorithmic task, a self-referential program that, in a sense, creates a self-copy and then performs that task on the self-copy. In an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{eps}$\end{document} in which the not-necessarily-constructive form of Kleene’s Recursion Theorem (krt) holds, such self-referential programs exist, but cannot, in general, be found algorithmically.
引用
收藏
页码:756 / 772
页数:16
相关论文
共 24 条
  • [1] Adami C.(2006)What do robots dream of? Science 314 1093-1094
  • [2] Blum M.(1967)A machine independent theory of the complexity of recursive functions J. ACM 14 322-336
  • [3] Bongard J.(2006)Resilient machines through continuous self-modeling Science 314 1118-1121
  • [4] Zykov V.(1991)Effectivizing inseparability Z. Math. Log. Grundlagen Math. 37 97-111
  • [5] Lipson H.(1994)Infinitary self-reference in learning theory J. Exp. Theor. Artif. Intell. 6 3-16
  • [6] Case J.(2002)Control structures in hypothesis spaces: The influence on learning Theor. Comput. Sci. 270 287-308
  • [7] Case J.(2007)To sleep, perchance to dream Science 315 1219-1220
  • [8] Case J.(1982)Inductive inference and computable one-one numberings Z. Math. Log. Grundlagen Math. 28 463-479
  • [9] Jain S.(1997)Generalized computable numberings and non-trivial Rogers semilattices Algebra Log. 36 359-369
  • [10] Suraj M.(2001)Some independence results for control structures in complete numberings J. Symb. Log. 66 357-382