Constructing group actions on quasi-trees and applications to mapping class groups

被引:0
作者
Mladen Bestvina
Ken Bromberg
Koji Fujiwara
机构
[1] University of Utah,Department of Mathematics
[2] Kyoto University,Department of Mathematics
来源
Publications mathématiques de l'IHÉS | 2015年 / 122卷
关键词
Asymptotic Dimension; Cayley Graph; Mapping Class Group; Hyperbolic Group; Cayley Tree;
D O I
暂无
中图分类号
学科分类号
摘要
A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and Out(Fn). As an application, we show that mapping class groups act on finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.
引用
收藏
页码:1 / 64
页数:63
相关论文
共 71 条
  • [1] Algom-Kfir Y.(2011)Strongly contracting geodesics in outer space Geom. Topol. 15 2181-2234
  • [2] Algom-Kfir Y.(2012)Asymmetry of outer space Geom. Dedic. 156 81-92
  • [3] Bestvina M.(1995)Orbihedra of nonpositive curvature Publ. Math. IHÉS 82 169-209
  • [4] Ballmann W.(2006)Asymptotic geometry of the mapping class group and Teichmüller space Geom. Topol. 10 1523-1578
  • [5] Brin M.(2012)Divergence and quasimorphisms of right-angled Artin groups Math. Ann. 352 339-356
  • [6] Behrstock J. A.(2011)Addendum: median structures on asymptotic cones and homomorphisms into mapping class groups [mr2783135] Proc. Lond. Math. Soc. (3) 102 555-562
  • [7] Behrstock J.(2011)Median structures on asymptotic cones and homomorphisms into mapping class groups Proc. Lond. Math. Soc. (3) 102 503-554
  • [8] Charney R.(2008)Dimension and rank for mapping class groups Ann. Math. (2) 167 1055-1077
  • [9] Behrstock J.(2006)A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory Trans. Am. Math. Soc. 358 4749-4764
  • [10] Druţu C.(2008)Asymptotic dimension Topol. Appl. 155 1265-1296